R - . -
R
Fvgey o)
P B s NJ FE‘LE COPY .) Copy 25 of50 copies
® T
Lo
e IDA PAPER P-2143
0 \
. S
< STRATEGY FOR ACHIEVING Ada-BASED
}D HIGH ASSURANCE SYSTEMS
o L
® Richard A. DeMillo
R. J. Martin
Reginaid N. Meeson
®
December 1988
°
Prepared for .. Faod
Ada Joint Program Office oo
® Rome Air Development Center ™ é\ ’/Cx

® [DS sTae e
S TRIBUTIN 572 73T
Rt d o puir s o
| me o |
o INSTITUTE FOR DEFENSE ANALYSES
1801 N. Bezuregard Street, Alexandria. Virginia 22311-i772
@

go 08 10

IDA Log No. HQ 88-033705

DEFINITIONS
10A publishes the tollowing documents to report the resuits ot its work.

Reports

Reports are the most authoritative and most carefully considered products IDA publishes.
They normaily embody results of major projects which (a) have a direct bearing on
decisions affscting major programs, (b) address issues of signiticant concern to the
Executive Bramch, the Congress and/or the public. or (c) address issues that have
signiticant sconomic implications. DA Reports are reviswed by outside paneis of experts
to ensure their high quality and reievance to the groblems studied, and they are released
by the President of IDA.

Group Reports

Group Reports record the findings and resuits ot IDA established working groups and
panels composed of senior individuais addressing major issuas which otherwise wouid be
the subject of an 1DA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevancs to the problems studied, and are released by the President of IDA.

Papeis

Papers, also authoritative and carefully considered products of IDA, address studies that
are narrower in scope than thogse covered in Reports. IDA Papers are reviewed to snsurs
that they meet the high standards expected of referasd papers in professional journsis or
formal Agency reports.

Dotuments

iDA Documents are used for the convenience of the sponsors or the analysts (a) to record
subisiantive work done in quick reaction studies, (b) to record the proceedings of
confcrances and meetings, (c) to make availabls praliminary and tentative resuits of
analyses, (d) to racord data developed in the courss of an investigation, or (e) to forward
information that is essentially unangiyzed and unevaluated. The review of IDA Documents
is suited to their content and intended use.

The work reporied in this document was conducted under contract MDA 963 84 C 0031 for
the Department of Defense. The publication of thi, IDA document does not indicate
endorsement by the Deparimsnt of Dstensa, nor shouid the contents be construed as
reflecting the official position of that Agency.

This Paper has been reviewed by IDA to assurs that it meets high standards of
thoroughness, ohjectivity, and appropriate anaiytical methodology and that the resuits,
conclusions and recommendations are properly sugported by the matsrial presented.

© 1990 Instituts for Dafense Anaiyses

The Government of the United States is granted an unlimited license to reproduce this
document.

Approved for public relesss, unlimited distribution. Unclassified.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to nveﬁx:go 1 hour per xxyom- mcludmg the time for nwcwmlgu instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and revi

collection of information, including suggestions for reducing this burden, to Weshi " o

es, Di

burden estimate or any other aspect of this
for Information Operations and Reports, 1215 Jeferson

Sc
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Mlmgement and Budget, P-perwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1988

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Strategy for Achieving Ada-Based High Assurance Systems

6. AUTHOR(S)
Richard A. DeMillo, R.J. Martin, Reginald N. Meeson

5. FUNDING NUMBERS
MDA 903 84 C 0031

T-D5-304

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Defense Analyses (IDA)
1801 N. Beauregard Street
Alexandria, VA 22311-1772

8. PERFORMING ORGANIZATION REPORT
NUMBER

IDA Paper P-2143

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Ada Joint Program Office (AJPO)
Room 3E114, The Pentagon
Washington, D.C. 2030i-3081

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, unlimited distribution.

12b. DISTRIBUTION CODE
2A

13. ABSTRACT (Maximum 200 words)

IDA Paper P-2143, Strategy for Achieving Ada-Based High Assurance Systems, documents the results of an
analysis of software testing and verification technology conducted for the Ada Joint Program Office (AJPO)
and the Rome Air Development Center (RADC) by the Institute for Defense Analyses (IDA). The paper
presents a coordinated strategy for meeting a critical technology goal of the U.S. Department of Defense---the
development of computer software for those systems upon which the Armed Forces can rely for the success of
missions with extreme and often life critical requirements.

14. SUBJECT TERMS

15. NUMBER OF PAGES

Ada Programming Language; High Assurance Systems; Technology Insertion; 82

Standards; Software Testing and Verification; Fault Tolerance.

16. PRICE CODE

17.SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT
SAR

NSN 7640 Nt 980.550

Standard Form 298 {Rev. 2-30
Prescnibed by ANSI Sid. 239-1R
20%.102

IDA PAPER P-2143

STRATEGY FOR ACHIEVING Ada-BASED
HIGH ASSURANCE SYSTEMS

Richard A. DeMillo
R. J. Martin
Reginald N. Meeson

| Accession For ;
. o ™~ an T ‘

1 NTIS Grikl r

] DTIC %42

December 1988 Y Uenanuaned O

f JusLificotlion— ;
‘ .
i !
Loy —
j Py tonien/ l

)

IDA

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-D5-304

EXECUTIVE SUMMARY

Purpose

More than any other nation, the US has entrusted its military future to technology.
Essential components of virtually every modern military system are the computers that
support command and control, aim weapons, track and identify hostile targets, keep
combat aircraft in stable flight, and automate many hundreds of other tasks. Essential to
these computers is the software that controls their operation. This paper presents a coor-
dinated strategy for meeting a critical technology need of the US Department of Defense
(DoD)—the development of computer software upon which military missions can fully
depend.

Recognizing the key role that computer software plays in modern weapon sys-
tems, the DoD and Congress have launched initiatives aimed at increasing national capa-
bilities in software technology. The centerpiece of these initiatives is the programming
language Ada. These initiatives are succeeding. Ada is now the cornerstone of software
technology in DoD. However, the very success of Ada has highlighted the risk that
software presents in military systems.

Need for Coordinated Strategy

In applications such as avionics, security, and strategic defense, it is not enough
to design the required capabilities into the system—systems must be assured of meeting
their requirements. Systems must undergo such indisputable engineering analysis that the
risk of failure is virtually eliminated. In the modern military world, high levels of
assurance must be demonstrated before rational decision-makers can field and operate
advanced automated systems. Systems that combine extreme operational and engineer-
ing requirements with severe assurance requirements are called high assurance systems.

In spite of the importance of high assurance systems within the DoD, assurance
technology development and management is largely fragmented and ineffective. At
senior levels within the DoD, software is still viewed as an uncontrolled risk element.
Important assurance programs are scattered and uncoordinated. Existing technology is
rarely shared among programs or Services. Research and development expenditures for
software assurance technology has declined and the research community has dwindled.

Policy and guidance advances of the early 1980s have not been pursued
vigorously. Contracts rarely include explicit and unambiguous assurance requirements.
In some instances, assurance is not attended to at all until very late in the acquisition

v

process. Regulations and standards give inadequate guidance to developers of high
assurance systems. New software standards and regulations have actually weakened
assurance requirements, not strengthened them. Standard terminology is nonexistent,
giving free reign to contractors to manipulate system evaluations.

While Ada has been established as the basis for mission critical software in pro-
grams ranging from the Strategic Defense Initiative to the Advanced Tactical Fighter, the
assurance technology needed to support Ada has been neglected. If this lack of attention
is not reversed, Ada-based high assurance systems and, in turn, national security will be
in jeopardy. The recommendations in this report should be implemented as essential
parts of DoD research and engineering.

Recommendations

The following specific actions are recommended to achieve and sustain Ada-
based high assurance systems:

Assurance Requirements —

e Review and, where necessary, revise existing acquisition policy and implement-
ing materials to ensure that a controlled and manageable assurance process
(called incremental assurance) is institutionalized.

Standards —

¢ Review and revise DoD-STD-2167A and DoD-STD-2168 to require the appli-
cation of appropriate assurance methods to high assurance systems.

¢ Develop a standard software engineering glossary that is acceptable to all DoD
components listing terms, definitions, and concepts that correspond to stan-
dard engineering usages.

Technology Insertion —

¢ Utilize existing technology insertion mechanisms for assurance technology.
o Incentivize contractors to develop and deliver productized versions of
assurance tools.

Required Research —

o Establish a broadly-based research initiative to rebuild the assurance research
community. This program should be coordinated with the Nationa! Science
Foundation (NSF) and other Government funding agencies, and should have a
goal of increasing funding at least four-fold over a five-year period.

e Direct DoD and Service Scientific Research Offices to fund both innovative
assurance technology projects and longer-term projects aimed at maturing and
validating existing methods.

¢ Develop joint industry-university research initiatives.

Coordination —

e Implement and institutionalize the technology and management recommenda-
tions in coordination with the Test and Evaluation community within the DoD.

vii

PREFACE

The purpose of IDA Paper P-2143, Strategy for Achieving Ada-Based High
Assurance Systems, is to communicate the results of an analysis of software testing and
verification technology conducted for the Ada Joint Program Office (AJPO) and the
Rome Air Development Center (RADC) under Task Order T-D5-263.

An earlier draft of this paper was reviewed within the Computer and Software
Engineering Division (CSED) by T. Mayfield, K. Price, and R. Winner (August 31,
1988).

Acknowledgements

The authors are indebted to the following people for participating in planning
meetings and helping to sei the directions for this work, and for their comments on earlier
drafts of this paper: W. Easton, J. Faust, P. Fonash, R. Gross, S. Hadley, G. Hoover,
A. Kopp, K. Kucherary, T. Mayfield, K. Rowe, J. Salasin, D. Vaurio, and R. Winner.

1.

2.

TABLE OF CONTENTS

INTRODUCTION

1.1 PURPOSE

1.2 SCOPE .

1.3 BACKGROUND

1.4 LIST OF ACRONYMS

TERMINOLOGY, DEFINITIONS, AND BASIC ENGINEERING CON-

CEPTS .
2.1 DEFINING ASSURANCE

2.2 PROPERTIES, HAZARDS, AND VULNERABILITIES .

2.3 OPERATIONAL AND TECHNICAL PROPERTIES
2.4 SETTING REQUIREMENTS ON PROPERTIES
2.5 EXAMPLES OF PROPERTIES
2.5.1 Technical Properties
2.5.2 Operational Properties
2.6 ASSURANCE METHODS
2.6.1 Eliminating Hazards . .
2.6.2 Decreasing the Likelihood of Hazard Success
2.6.3 Tolerating Hazards .
2.6.4 Coverage of Hazards
2.6.5 Levels of Confidence . .
2.6.6 Classifying Assurance Methods .

AVAILABLE TECHNOLOGY
3.1 FAULT AVOIDANCE

3.1.1 Specification Technology

3.1.2 Design Technology

3.1.3 Programming Technology . . .
3.2 FAULT LOCATION AND REMOVAL .

3.2.1 Static Analysis

3.2.2 Dynamic Analysis

3.2.3 Formal Verification .

3.2.4 Quality Assurance and Venﬁcatlon and Valzdatlon

3.2.5 Problem Reporting and Tracking

3.2.6 Regression Testing

3.2.7 Quality Measurement

3.2.8 Reliability Modeling

X1

W R = e

O WO 00 00 2 O O v Wiy

— b et ek i
W= mkO O O

[[S T S I S S I S I S e e T
W h A B WD 00 00 N Ny

3.3 FAULT TOLERANCE ..
3.3.1 Identification of Critical Components .
3.3.2 Fault Detection
3.3.3 Fault Isotation .

3.3.4 Recovery Mechanisms . .

3.4 ACQUISITION AND MANAGEMENT PRACTICE
3.4.1 Life Cycle Models
3.4.2 Organizational Approaches
3.4.3 Configuration Management .
3.4.4 Effect of Standards and Quality Resources

3.5 SUMMARY

. ASSURANCE REQUIREMENTS . .
4.1 DERIVING ASSURANCE REQUIREMENTS
4.2 SYSTEM LEVEL SOFTWARE RISK DRIVERS .
4.2.1 Critical Functions
4.2.2 Mission/Function Matrix .
4.2.3 Identifying Risk in Software Functlons .
4.2.4 Other Risk Drivers
4.3 REQUIRED CHARACTERISTICS
4.3.1 Goals and Thresholds
4.3.2 Software Specific Characteristics
4.3.3 Critical Assurance Issues . .
4.4 ADEQUACY OF ASSURANCE PROGRAMS
4.4.1 Management .
4.4.2 Integrated Schedule . .
4.5 SOFTWARE ASSURANCE REQUIREMENTS .
4.5.1 Demonstrating Required Characteristics .
4.5.2 Validation Products .
4.5.3 Handling Deficiencies .
4.6 APPLYING ASSURANCE TECHNOLOGY
4.6.1 Identify Critical Functions and Components .
4.6.2 Determine Thresholds and Assurance Issues
4.6.3 Determine Assurance Objectives
4.6.4 Coverage of Hazards

. RECOMMENDED STRATEGY
5.1 ASSURANCE REQUIREMENTS
5.2 STANDARDS

Xii

25
26
26
27
27
27
28
28
28
29

31
31
31
31
32
32
33
33
33
34
34
34
34
35
35
35
37
38
38
39
39
41
42

45
45
45

5.3 TECHNOLOGY INSERTION .

5.4 REQUIRED RESEARCH
5.5 COORDINATION .

REFERENCES

xiii

46
46
48

51

LIST OF FIGURES

Figure 1. Coverage of Hazards by Assurance Methods

Figure 2. Incremental Verification and Validation Process

12

LIST OF TABLES

Table 1. Assurance Method Classification .

Xvii

14

1. INTRODUCTION
1.1 PURPOSE

More than any other nation, the US has entrusted its military future to Technol-
ogy. A critical component of virtually every modern military system is the computer com-
ponentry that supports command and control, aims weapons, tracks and identifies hostile
targets, keeps combat aircraft in stable flight, or automates many hundreds of other
tasks. This report presents a coordinated strategy for meeting a critical technology goal
of the US Department of Defense (DoD)~—the development of computer software for
these systems upon which the Armed Forces can rely for the success of missions with
extreme (often life-critical) requirements.

1.2 SCOPE
The recommendations in this report cover four broad areas:

¢ Definitions and concepts: Section 2 presents terminology, definitions, and
basic engineering concepts. It is recommended that DoD software technology
programs adopt and promulgate these definitions to all DoD components.

e Available technology: Section 3 summarizes the state of the available technol-
ogy, engineering methods, and tools that can be applied to provide software
assurance. Gaps in current technology are pointed out and strategies are
recommended for ensuring that mature assurance technology will be available
for high assurance Ada-based systems.

e Assurance requirements: Section 4 discusses methods for identifying and
specifying required levels of software assurance. These include identifying
software risks, specifying required software characteristics, and assessing the
effectiveness of assurance programs.

¢ Technology transition and coordination: Section 5 identifies efforts the DoD
should initiate to achieve its mission-critical software assurance needs. This
includes a high-level strategy for identifying the most promising assurance tech-
nologies and putting them to use in system development. Relevant recommen-
dations are aimed at institutionalizing a coordinated effort whereby existing
and future technology advances can be captured for use by DoD.

While these recommendations are directed primarily toward providing assurance for sys-
tems with critical safety and reliability requirements, the definitions and technology apply
equally to less critical systems.

1.3 BACKGROUND

As Mission Critical Computer Resources (MCCR) become an increasingly com-
mon component of modern military systems, computer software continues to loom large
as a major source of risk in system acquisition, operation, and maintenance. In 1984, an
IDA study (Redwine et al. 1984), commissioned by the DoD, found that of the six exist-
ing long range planning documents that outlined future technologies for 1990 and beyond,
70 percent of the technologies, functions and systems described in those plans required
software. A detailed analysis of required functional areas was carried out for one of
these planning documents in order to identify the extent to which software is important to
fulfilling mission objectives. This analysis showed that, above the guns and boots level of
combat support, virtually all mission areas depended on software to fulfill 80 percent or
more of their functions.

Furthermore, the software needed for these systems is often subjected to the most
extreme requirements:

e In avionics applications, typical reliability and availability requirements
specify software capable of delivering over 10° continuous service hours without
loss of critical system functionality.

e In security applications, multilevel secure systems capable of withstanding
arbitrarily sophisticated penetration attempts comprise an important capability
for the heavily networked command and control hierarchies of all the Services
(DoD 1983).

¢ In strategic defense battle management/command, control, and communica-
tions (BM/C3) systems, software must discriminate, track, and reliably direct
ordnance to hundreds of thousands of objects.

In these and many other applications, it is not enough to design the required capabilities
into the system. These systems must not only satisfy their requirements, they must be
assured of doing so. That is, the systems must have undergone such indisputable
engineering analysis that the risk of failure has been eliminated. Or, if the risk of failure
cannot be eliminated, then the likelihood of mission success must demonstrably balance
the threat of failure. In each of the application areas mentioned above, a requisite level
of assurance is needed before a rational decision-maker would consider operating the sys-
tem. Systems that combine extreme operational or engineering requirements with severe
assurance requirements are called high assurance systems.

In spite of the importance of high assurance systems in the DoD, assurance tech-
nology management is largely fragmented. Senior-level DoD assurance policy developers
still view software as a significant and largely uncontrolled risk element. In development
organizations, important assurance programs are scattered and uncoordinated. Standard
terminology is essentially nonexistent, giving free reign to contractors to invent definitions
and thus manipulate system evaluations. Existing technology is rarely shared among pro-
grams or Services. Regulations and standards give inadequate software guidance to
developers of high assurance systems. The effect is that statements of work and contracts
rarely include explicit and unambiguous assurance requirements—as a result most
development efforts spend their resources on more glamorous engineering aspects, such
as design. In some instances, assurance is not attended to at all until very late in the
acquisition process.

These observations were initially documented in 1983; for further elaboration, see
(DeMillo et al. 1987). In the intervening years, the situation has probably deteriorated.
Research and Development (R&D) expenditures for software assurance technology have
declined. The research community has dwindled. New software standards and regula-
tions weaken assurance requirements. Even the policy advances of the early 1980’s (Bol-
ino and McCracken 1984) have not been pursued with vigor.

The advent of the Ada language has had many benefits for software engineering
and will undoubtedly ease many of the productivity and quality concerns that have given
rise to the DoD software initiatives. However, the Ada community has concentrated its
efforts on compilers, environments, and development tools. Despite a few well-publi-
cized attempts to develop some momentum (Roby 1985), assurance technology for Ada
has definitely taken a back seat. Given the general state of disrepair of software
assurance technology and the lack of attention given to assurance technology in the Ada
community, there is a chance that high assurance Ada-based development for the early
1990’s will be in jeopardy.

1.4 LIST OF ACRONYMS

DoD Department of Defense

IDA Institute for Defense Analyses
MTBF Mean Time Between Failures
NCSC National Computer Security Center
OSD Office of the Secretary of Defense
R&D Research and Development

T&E Test and Evaluation

2. TERMINOLOGY, DEFINITIONS, AND BASIC ENGINEERING
CONCEPTS

2.1 DEFINING ASSURANCE

The literal meaning of the verb to assure is to make safe. The term also connotes
evidence of certainty in the form of a legal certificate or insurance policy. Even in every-
day usage, assurance is a complex concept. In this paper, the safety concept is used
extensively to summarize assurance goals. The safety metaphor is general, as demon-
strated below. To convey assurance requires:

o A specification of the hazard or threat. Safety is a relative notion. It is not
possible to be absolutely safe. Rather, safety must be judged with respect to a
specified hazard or threat to safety.

o A certificate of certainty that functions like an insurance policy (or other legal
assurance). In other words, the certifying agent must have made an assessment
of the risk in terms of the likelihood of the threat, the probable loss if the threat
succeeds, and the likelihood that the threat will succeed. Then, taking into
account the expected error in the risk assessment process, the certifying agent
estimates the extent to which he is willing to certify that he is certain of safety.

For mission critical systems, assurance requires:

¢ Specification of properties: including any characteristics of the system to be
demonstrated or maintained when faced with given hazards or threats. Exam-
ples of such properties will be given later.

o Identification of threats: explicit specification of the conditions under which
the property is to be maintained. In some cases, the “threat” corresponds to
the hazards that are encountered in the system’s intended environment. Other
times, it may be useful to deal with hazards that are due to engineering
shortcomings leading to system vulnerabilities.

¢ Certification of assurance: an explicit expression of confidence that the system
will be maintained in the given property when confronted with the threat or
hazard. Like an insurance policy, this certificate can have high cost if the risk
is high (either the vulnerability is great, the hazard is significant or the cost of
loss is large).

2.2 PROPERTIES, HAZARDS, AND VULNERABILITIES

It is usual practice in system engineering to combine the property with the hazard
and call the composite concept the “property.” This is to emphasize that the properties
are not absolute, but rather are relative to some specified hazard. For example, the fol-
lowing is the usual definition of the reliability property:

Reliability is the probability that a system will perform as intended under
stated conditions for a specified period of time.

The following are important aspects of such property definitions:

o The threat or hazard is explicit: the definitions require the system to be
operated in a specified environment by personnel typical of those who will use
the system in practice and for a specified length of time. Any failure to per-
form intended functions within this envelope is a reliability event that reduces
the measured reliability of the system. Notice that no requirements whatsoever
are placed on the system when it operates outside this envelope (although
sometimes failure types include “Acts of God” or other ways of making the
envelope very large).

o The definition implies measurement criteria: in fact, the definition serves as a
guideline for how to conduct tests and measurements to determine whether or
not the property is satisfied. Sometimes definitions that include their own
measurement criteria are called testable. By referring to the specified func-
tions, the definition requires a list or other characterization of the acceptable
operating capabilities. Furthermore, the definition explicitly requires a proba-
bility distribution on the failures (or non-failures). The definition is explicit in
that to satisfy the property, the system when operated as specified must exhibit
a mean time between failures (MTBF), calculated by dividing the observed
reliability events into the specified mission time. The failure distribution is then
modeled as a rate of failure per unit time, 1/MTBF, sometimes called the
hazard rate (the reliability is then 1-1/MTBF).

By the same token, systems may have inherent weaknesses that can be exploited by
hazards. The usual term for this is vulnerability. That is, a system vulnerability is a sys-
tem property that increases likelihood of hazard success.

2.3 OPERATIONAL AND TECHNICAL PROPERTIES

Reliability is an example of an operational property. That is, its hazard is defined
with respect to the operational threat and associated environment. Other properties tak:
on meaning without reference to the operational environment. Consider the following

6

definition:

Correctness is the extent to which the software satisfies its specified
requirements, or the extent to which the software conforms to its specifica-
tions and standards.

Like the definition of reliability, this definition is testable. It implies a method of meas-
urement by requiring that the extent of conformance to a fixed set of specifications be
measured. Unlike reliability, however, the hazards of incorrect software do not arise
from the operational environment. They are technical problems that arise from the
engineering process. The threat here is that faults in the software may preveant the system
from conforming to its specifications.

Technical requirements and their associated properties refer to various engineer-
ing parameters, specifications, tolerances, and other aspects of the engineering process
that may influence overall product effectiveness. Correctness is a technical property
since it attempts to place a requirement on the output of the engineering process. The
hazard consists of whatever defects exist in the engineering process. Measurement
methods for technical requirements include checklists, traceability charts, test coverage,
or any similar devices that allow one to track extent.

Since the technical hazard exists independent of any particular external threat
(e.g., an error or “bug” exists in the software, whether or not it is ever stimulated by an
input), it represents an inherent weakness in the system. Therefore, it is common to use
system vulnerability as the measure of technical hazard.

2.4 SETTING REQUIREMENTS ON PROPERTIES
Technical and operational properties must have:

e Explicit identification of the hazard
o Testable definitions

The properties are used to set technical and operational requirements. These require-
ments are constraints that the system must satisfy in order to conform to necessary
engineering standards, tolerances, or quality criteria; to be operationally functional or
effective against an external threat; or to operate with suitable non-functional charac-
teristics in its intended environment.

Requirements can be stated in either of two forms:

e Goals: desired or expected values of technical or operational properties and
parameters. Goal requirements are also used in evolutionary developments to

indicate a requirement toward which the system will grow.
e Thresholds: values of technical or operational properties and parameters
below which overall system worth will be unacceptable.

For purposes of applying assurance technology, threshold requirements are more valuable
than goals. With a threshold requirement, the risk can be directly calculated from the
probability of not meeting mission objectives as specified in the relevant properties. If a
goal requirement is satisfied, then clearly the risk is reduced. On the other hand, if a goal
requirement is not satisfied, the assurance agent has a difficult time estimating overall
system worth—the goal does not set minimum engineering or operational criteria.

2.5 EXAMPLES OF PROPERTIES

The following properties are commonly used in requirements statements for mis-
sion critical ' Ada-based systems. Many of these definitions have been taken directly from
existing DoD documents. However, in those cases where the existing definition is defec-
tive (e.g., does not identify an explicit hazard or is not testable) the definition has been
repaired without altering its intent. In those cases where there are conflicting definitions,
the usage that is most consistent with standard engineering usage has been chosen.
Notice that, in some circumstances (e.g., security) the property is used ambiguously to
designate the extent to which measures have been taken to make the system safe as well
as the likelihood of success of a specified threat. This is important since assurance of the
technical property does not necessarily imply assurance of the operational property.

Software quality is the degree to which software possesses a desired combination
of attributes (i.e., technical and operational properties). Hence, it is not identified as a
separate property.

2.5.1 Technical Properties

The following technical properties are used in requirements statements for mis-
sion critical Ada-based systems:

e Cohesion: the extent to which specified data names, structures, and functions
in a software component depend upon each other.

o Correctness: the extent to which the software satisfies its specified require-
ments, or the extent to which the software conforms to its specifications and
standards.

e Coupling: the extent to which data names, structures, and functions in dif-
ferent software components depend on each other.

o Security: the extent to which specified measures have been taken to protect
computer hardware, software, and resident information and data from

unauthorized access, use, modification, destruction, transmission, or disclo-
sure. '

2.5.2 Operational Properties

The following operational properties are used in requirements statements for mis-
sion critical Ada-based systems:

o Availability: the probability that a specified function or capability can be ini-
tiated or invoked when the system is operated in its intended environment for a
specified period of time.

e Fault-Tolerance: the probability that a system detects, recovers and insulates
itself from the effects of specified component faults or failures in order to main-
tain a high degree of availability when operated under stated conditions for a -
specified period of time. .

o Integrity: the probability that stored information and data will not be modified
by specified unauthorized means.

e Maintainability: the probability that specified unavailable functions can be
repaired or restored to their operational state in the system’s intended mainte-
nance environment during a specified period of time.

e Reliability: the probability that the software will perform as intended under
stated conditions for a specified period of time.

e Security: the probability that computer hardware, software, and resident infor-
mation and data will be protected from specified threats such as unauthorized
access, use, modification, destruction, transmission, or disclosure.

o Survivability: the probability that the software will perform and support criti-
cal functions in its intended environment without failure when a specified por-
tion of the system is inoperable. '

2.6 ASSURANCE METHODS

The overall goal of an assurance method is to reduce the risk associated with a
software system and one or more properties. The risk is determined by the likelihood of
success for the hazard, the level of confidence that the assurance method leads in fact to a
specified reduction in probability of success for the hazard, and the relative costs of (1)
the assurance method and (2) of failure to satisfy the property.

There are three ways that an assurance method can reduce the probability that
the hazard will succeed:

e Eliminate the hazard.
e Decrease the likelihood of success for the hazard.

e Demonstrate that the relevant property can be maintained even in the presence
of the hazard.

The effectiveness of the assurance method is determined by two factors:

e Coverage of the hazard: it is possible for an assurance method to address all
occurrences of a hazard, only a portion of the hazard, or no occurrences of the
hazard.

e Level of confidence in the method: even if the assurance method produces a
positive result, it is still possible that the software will ultimately fail to satisfy a
given property. The probability of this occurrence is measured by the level of
confidence in the method.

2.6.1 Eliminating Hazards

This approach to assurance seeks to decrease the likelihood of a hazard ever
occurring. One common assurance method that works this way is the application of sys-
tematic design methods. The hazard in this case is the occurrence of one or more
software design, specification, or implementation errors. Another technique is to design
the system to be adaptable to changing threats. The hazard in this instance is the
occurrence of a threat that may not be fully anticipated or understood by the designers.

2.6.2 Decreasing the Likelihood of Hazard Success

This is the traditional domain of testing, verification, and validation. Systematic
assurance methods can identify specific system vulnerabilities and estimate the probabil-
ity that a given hazard will be able to successfully exploit the vulnerability. An opera-
tional reliability test, for example, subjects the system to realistic scenarios of the kind
that will be encountered in actual usage, records and classifies reliability events, and cal-
culates the expected system reliability. If the system vulnerabilities make it unsuitable for
its mission, then a redesign or maintenance action is undertaken to remove or reduce the
vulnerabilities.

2.6.3 Tolerating Hazards

The prime example of this approach is fault-tolerance to assure system availabil-
ity. The hazard in this case is the occurrence of one or more faults or failures in system
components. The design must be capable of detecting the occurrence of a fault, contain-
ing the effects of the fault, and invoking the required function in a manner that avoids the
fault. For fundamental reasons, this approach requires some sort of redundancy and
therefore may increase overall system cost.

10

2.6.4 Coverage of Hazards

A key aspect of every assurance method is the extent to which it covers the
hazards. Some methods offer complete coverage. These methods are sufficient to
guarantee the property of interest. Suppose, for example, that the property to be assured
is correctness with respect to a fixed specification of security. If a valid proof of correct-
ness exists for that specification, then no software error can exist that will produce an
inconsistency with the specification. The space of all such hazards has been completely
covered by the proof of correctness. Since assurance methods that completely cover the
space of hazards are sufficient to guarantee the property, they will be called sufficient
assurance methods (see Figure 1a).

Another alternative is that the method only partially covers hazards (Figure 1b).
For many properties of interest in Ada-based mission critical applications, these methods
play a crucial role. In the example above, the proof of correctness is sufficient but may
not be immediately useful (e.g., the proof may not be readily obtainable or the level of
confidence in the validity of the proof may be unacceptably low). In these circumstances,
it is often desirable to turn to necessary methods, even though they only partially cover
the hazards. In this case, a test that executes every statement in the software is such a
method. Passing the test covers only those errors that can be revealed by complete state-
ment coverage (a small subset of all possible errors). Not conducting such necessary
tests, however, significantly raises the risk of errors in the unexecuted portions of the
software. In fact, without actually executing all statements it is generally not possible to
rule out the presence of viruses, covert channels, and other threats and vulnerabilities.
Complete statement coverage is, in other words, a necessary assurance method (even
though it is usually not sufficient).

2.6.5 Levels of Confidence

If an assurance method provides a fixed indication that the software satisfies its
intended property, there is somctimcs a residue of doubt about whether or not the pro-
perty actually is satisfied. Sometimes tiis residue is so small that it is negligible. In cer-
tain applications, for example, there are only a relatively small, finite number of ways to
stimulate the software, so that an exhaustive test of such a system and the proper instru-
mentation to measure whether or not the property holds gives an extremely high level of
confidence in the result. By contrast, it is usually not possible to conduct such an exhaus-
tive test. One alternative is to generate random sequences of sample inputs according to
probability distributions that are known or can be assumed to exist in the operational
environment. In these cases, there is a distinct likelihood that (a) the chosen distribution
for the input space is incorrect, or (b) the sample size was too small, or (c) the

11

Hazard Instances Assurance Method

(a) AN ASSURANCE METHOD THAT IS SUFFICIENTLY STRONG
TO INSURE THAT NO INSTANCES OF THE HAZARD OCCUR

Hazard Instances Assukance Method

" (b) ANECESSARY ASSURANCE METHOD MAY ONLY
PARTIALLY COVER THE POSSIBLE INSTANCES OF THE HAZARD

Figure 1. Coverage of Hazards by Assurance Metheds

operational scenario rules out the use of random sampling of inputs. In security applica-
tions, for example, the most threatening operational scenarios are far from random—
they are chosen by purposeful adversaries who exploit known or suspected vulnerabili-
ties. These factors all work to lower the level of confidence in the assurance method.
High levels of assurance may result from single applications of assurance methods with
high levels of confidence or from the combined application of such methods.

One way to select an assurance method is by its utility. Using this strategy, one
would choose to apply the method that yields the highest levels of confidence. Another
strategy is to select the method according to a risk-aversion rule. Using this rule, one
would select methods that would provide sufficient confidence for hazards or threats with
the highest risk. In practice, combinations of these selection rules are used based on the
various other risk factors described above.

2.6.6 Classifying Assurance Methods

The next section of this report will briefly review the major assurance methods
that are applicable to Ada-based systems. These methods will be classified according to
how they address the hazards, the levels of assurance that are possible and the kinds of
assurance properties they address. Table 1 summarizes this classification.

13

Table 1. Assurance Method Classification

Legend:

S = Sufficient Methed

N = Necessary Meathod

L = Low Certainty

H = High Certainty

X « Method Applies to
Indicated Property

OPERATIONAL
PROPERTES

SURVIVABILITY

SECURITY-OPERATIONAL

RELUABILITY

MAINTAINABILITY

INTEGRITY

FAULT-TOLERANCE

AVAILABILITY

TECHNICAL
PROPERTES

SECURITY-TECHNICAL

QUALITY

CORRECTNESS

CERTIFIABILITY

LEVEL CF CCNFIDENCE

HAZARD COVERAGE

METHODS | POMVER

TCLERATING HAZARD

OETECTING/REMOVING HAZARD

ELIMINATING HAZARD

SPECKFICATION

PRCTOTYPING

EXECUTABLE SPECIFICATIONS

X
S

A P.4

MULTIPLE SPECIFICATIONS

FINITE STATE METHQODS

] 2]
ocloclirc

PETRINETS

FORMAL SPECIFICATIONS

ADA BDL

E{FAEA R IFA R
X xxx_l

X

RECUREMENTS MODELLING

il

DESIGNPRO-
GRAMMING

—

STePWIGE REFINEMENT

STRUCT JRED DESIGN

o e 1 X2

=R AR< R [XIX

A2

OBUECT CRIENTED DESIGN

R IR XX

UCTURED PROGRAMMING

b3

OBJECT-ORIENTED PROGRAMMING

AUTOMATIC PROGRAMMING

) ¢
m mm
3 ndl o el £ d P BRI S

x

TESTING

OTHEA METHOOS

STRUCTURED WALKTHROUGHS

SYMBOLIC EXECUTION

T

STRUCTURAL COVERAGE

OOMAIN COVERAGE

MUTATION TESTING

FUNCTIONAL TESTING

RANDCM TESTING

2] Z] Z[n
T~

R IR <] XX

-4 574574074

QOPERATIONAL TESTING

GYPSY

I X PRI XX

b'd

vOM

X
:r;

b4

V&V

POST DEPLOYMNET
l r FORMAL VERIFICATION

PROBLEM TRACKING

b
i

OBSERVATION PACKAGES

ZlZnkn
o

e FAULT TOLERATNCE

METRICS

RECOVERY BLOCKS

N-VERSION PROGRAMMING

b d

EVOLUTIONARY DEVELOPMENT

REUSE

FAFAAEN
L

u(l X

14

3. AVAILABLE TECHNOLOGY

The assurance technology available for technical properties is almost exclusively
error and fault based. In other words, this technology explicitly addresses the correctness
property. Other properties must be restated in terms of correctness before these methods

apply.
3.1 FAULT AVOIDANCE

The first step in the development of Ada-based high assurance software is to
avoid the initial introduction of faults into the software. This section will review software
engineering technology that addresses the specification, design, and construction of high
assurance software.

3.1.1 Specification Technology

A prerequisite to the development of high assurance software is a precise under-
standing of its intended performance. In other words, software should not be built to
satisfy unknown requirements. This applies to assurance requirements, as well as to
technical and operational performance requirements. If the software is to achieve cer-
tain levels of assurance, the associated requirements must be specified prior to the
software’s design and construction. Operational and technical properties of interest were
defined earlier. The problem is how to adequately specify these quality requirements.

One way to determine requirements is to build prototypes of key portions of the
system for examination by application specialists. Prototypes facilitate communication
between system users and system developers (Henderson 1986). The software develop-
ment process consists primarily of the software developer documenting and constructing
his interpretation of the users’ system concept; however, seldom do the backgrounds and
terminologies of the system user and the software developer coincide. Therefore, tools
and techniques that aid in the unambiguous transfer of information and requirements
from user to developer are of prime importance. In addition, prototypes can demonstrate
the feasibility of system requirements and provide a basis for experimentation during
trade-off analyses (Aho, Kernighan, and Weinberger 1985). Another vehicle for user-
developer communication is application-oriented specifications (Bentley 1986).

15

Executable specifications and the creation of multiple specifications are other
techniques for uncovering errors in the initial documentation of system requirements.
Executable specifications allow testing and validation of the requirements prior to
detailed design and implementation (Zave and Schell 1986). When inconsistencies exist,
the users are queried for the information necessary to settle the dispute. When variations
represent alternate conceptualizations of the system, they can form the basis for future
trade-off studies or redundant development efforts.

Each of the techniques described above concentrates on the examination of the
system requirements as represented by the specifications. In one sense, this is a look
backward in the system development process. Specification technology also encompasses
a variety of computing oriented specification techniques that emphasize the forward look
into the software development process. Formal computing oriented specification nota-
tions can be categorized as either state-oriented or relational notations (Fairley 1985).
State-oriented notations include decision tables, finite state machines, and Petri nets.
Petri nets are of special interest since they support the specification of concurrency
(Peterson 1977; Bruno and Marchetto 1986). State charts combine the best of several
specification methods and are particularly useful for specifying real-time systems (Bruns
et al. 1986). Relational notations include formal languages (both graphical and textual)
which allow automatic analysis for completeness, consistency, and satisfaction of other
specification rules. Examples of specification languages and processors include
PSL/PSA (Teichrow 1977), RSL/SREM (Alford 1977), and Gist (Balzer 1981). The use
of Ada for specification purposes has also been investigated (Linn et al. 1988).

In contrast to the formal specification techniques described above, fuzzy specifi-
cation techniques can be used to avoid the over-specification of requirements. This tech-
nique incorporates imprecision in situations where additional accuracy does not contri-
bute to the ultimate solution of the problem (Rine 80). This technique could be quite
promising as a method for the effective utilization of the scarce resources allocated for
requirements specification.

The anticipated life times of today’s Ada-based systems and the certain changes
in their operational environments make software engineering technologies that support
evolution very important. The evolutionary process pivots on the continuing evaluation
and improvement of the specifications over time. Essential to the control of this process
is a mechanism for retaining information about the specifications for past, present, and
future instantiations of the software (Martin 1987).

Other aspects of contemporary Ada-based systems that demand advanced
specification technology include the requirements that they be real-time, distributed,

16

fault-tolerant, and secure. Real-time and distributed system requirements necessitate the
ability to represent timing, synchronization, and ordering information in the specification.
One example of work in this area is Communicating Sequential Processes (CSP) (Hoare
1978). Fault-tolerant and security requirements necessitate the ability of the specifica-
tions to represent information about the fault model being employed, as well as security
model properties (DeMillo and Merritt 1983). Finally, Ada compounds the need for a
specification technique that supports concurrency and tasking.

3.1.2 Design Technology

Once the requirements have been determined and appropriately specified,
software engineering design technology exerts its influence on the ultimate quality of the
application. The fundamental concepts of software design include abstraction, informa-
tion hiding, structure, modularity, and concurrency. An assortment of design techniques
and notations are currently available. They can be distinguished by the levels of
emphasis placed on each of the fundamental concepts. Examples of design techniques
include stepwise refinement (Wirth 1971), structured design (Yourdon and Constantine
1979), object-oriented design (Booch 1983), and Jackson System Development (Jackson
1982). These techniques employ design notations such as data flow diagrams, structure
charts, procedure templates, and design languages.

Selections of design technology for application to specific projects are made sub-
jectively due to the lack of objective evidence differentiating the effectiveness of the tech-
niques. In fact, it appears that the major benefit derived from the use of modern design
techniques stems from the enforcement of a systematic approach rather than inherent
characteristics of the techniques. Further, experimental results challenge the benefits of
adhering strictly to particular design concepts such as modularity and information hiding
(Card, Church, and Agresti 1986).

As with specification technology outlined previously, the selection of technology
for use during the design of software must be guided by the requirements of the applica-
tion. Again, any techniques selected must be able to represent timing, synchronization,
and ordering information. Appropriate design techniques for use with Ada, such as data
abstraction and object-oriented design, are also important (Booch 1983). Finally, the
evolution of software requires that chosen design techniques facilitate the process of
change.

3.1.3 Programming Technology

Current programming technology, in many cases, parallels current design technol-
ogy. Modern programming language features support the fundamental concepts of

17

design: data abstraction and separate compilation support design abstraction, scoping
rules support information hiding, coding standards support structured design and modu-
larity, and concurrency supports parallelism in designs. Further, many of the design tech-
niques reviewed previously are implemented by currently available programming tech-
niques: structured programming (Linger, Mills, and Witt 1979), object-oriented program-
ming (Shriver and Wegner 1987), and Jackson Structured Programming (Jackson 1982).
And, as with design, it is not apparent that any of the currently- advocated programming
techniques is clearly superior to the others with respect to the ultimate quality of the
application software.

The application of artificial intelligence to the realm of software development has
resulted in a variety of attempts to either automate a portion of the programming process
or assist human beings with the tasks associated with programming. The term applied to
this area of research is automatic programming. Programming techniques that reduce
the dependence on humans are attractive since human error is thought to be a major
cause of low quality in software systems. Automatic programming systems currently
under investigation can be distinguished by their specification methods and approaches
(Barr and Feigenbaum 1982). Specification methods include the use of formal specifica-
tion, specification by example, and natural language specification. Approaches to pro-
gram generation include theorem proving, program transformation, knowledge engineer-
ing, and traditional problem solving. Examples of experimental systems include PSI
(Green 1976), SAFE (Balzer, Goldman, and Wile 1976), the Programmer’s Apprentice
(Rich and Shrobe 1978), and Protosystem I (Ruth 1978).

3.2 FAULT LOCATION AND REMOVAL

As software products become available, the emphasis of the software develop-
ment process shifts from fault avoidance to locating and removing the faults that were
introduced in spite of the use of fault avoidance techniques. Three primary types of
activities undertaken are test and evaluation (T&E), quality assurance (QA), and verifi-
cation and validation (V&V). Testing techniques are usually classified as either static or
dynamic analysis (DeMillo et al. 1987). When utilizing static analysis techniques, the
software is usually not executed; rather, human code readers or automated analyzers pro-
cess program text in order to resolve outstanding issues. Dynamic analysis techniques, on
the other hand, depend on code execution for data concerning the software’s behavior.

3.2.1 Static Analysis

Static test methods are primarily used during early design stages to verify the con-
sistency of intermediate engineering or incomplete software products with prior specifica-
tions or other documents. The nature of static methods makes them ill-suited for directly

18

addressing operational properties or issues. Nevertheless, static analysis is the principle
tool for deriving early estimates of whether or not required technical properties are satis-
fied. Some of these methods simply measure the extent to which basic engineering stan-
dards have been satisfied. Still others carry out more sophisticated analyses (e.g., identi-
fying statements that cannot be reached by any feasible control path).

An important class of static methods involves the structured “reading” of pro-
gram instructions. These readings or walk-throughs can be carried out in a group format
(during which the group may play an adversarial role) or by a single programmer. Three
major issues that can be resolved with this technique are the following:

e Completeness: is every specified requirement successfully addressed in the
design?

¢ Consistency: is the design consistent with itself as well as with previous specifi-
cations and constraints?

o Traceability: are all elements of the design traceable to specific required func-
tional features or capabilities?

One difficulty in relying on static analysis, particularly those approaches utilizing subjec-
tive evaluations or human readers, is their relative non-reproducibility. Although such
tests can be planned and carried out to support specific test objectives, test reporting and
sharing of test results may not be possible.

Static analysis techniques as applied to both design documents and code have
benefited from extensive examination and application in recent years. Although tools
implementing static analysis techniques are not yet abundant for Ada, the underlying
technology is mature and it is doubtful that automation of desired capabilities would pose
many problems.

Symbolic execution lies in the gray area between static analysis and dynamic
analysis. This technique assigns symbolic values to program variables and produces an
execution tree which characterizes the possible execution paths. If each path can be
shown to be symbolically correct (i.e., the symbolic expression associated with the execu-
tion of the path corresponds to the specifications), then the program is correct (Darringer
and King 1978). The primary uses of symbolic execution are test data generation and
proving program correctness.

3.2.2 Dynamic Analysis

The application of dynamic analysis techniques is essential for Ada-based high
assurance systems. Determination of the software’s satisfaction of extreme quality
requirements can only be accomplished by systematically exercising the software.

19

Principal dynamic analysis activities are the design of tests to establish certain charac-
teristics of the software, the execution of the tests according to plan, and the analysis of
results as allowed by the underlying theory of the chosen testing technique. Testing tech-
niques of interest include structural coverage tests, domain testing or input space parti-
tioning, error coverage tests, functional testing, random testing, and macroscopic pro-
gram instrumentation.

A structural coverage test is satisfied if test data can be supplied that causes the
execution of the specified percentage of the structural features of the software. A com-
mon structural coverage measure is statement coverage: a K percent statement coverage
test is satisfied by any test data that results in the execution of K percent of the basic
statements in the software program. Variations on statement coverage include such con-
ditions as demonstrating that each executed statement is necessary. Another structural
coverage measure is decision-to-decision branch coverage. This is a generalization of
statement coverage. In statement coverage testing, a conditional or branching statement
is considered the same as a non-branching statement: as long as it is executed by the test
data, it contributes to the total coverage score of the test. For many programs that con-
tain branches, however, the mere execution of a conditional statement is less significant
than exercising all of the possible outcomes of the conditional. These decision-to-deci-
sion branches must be covered at the specified percentage in order to pass this kind of
test. Coverage of higher level structural features may also be specified in a test plan.
While structural coverage tests are seldom used as sufficient conditions for a test, they are
commonly included in test plans as necessary tests.

Structural coverage testing is usually accomplished via the use of microscopic
program instrumentation or, in other words, inserting recording or history collecting
processes into the software. These routines do not affect the functional behavior of the
system, but serve to provide key information for examination during test analysis and
debugging activities. A research issue associated with this use of this technique is the per-
formance implications which constrain its applicability when testing real-time software.
Another use of program instrumentation is for the insertion of assertions into the
software, so that the tester is notified whenever a basic assumption about the software’s
operating conditions is violated. Although automated tools may not be available to sup-
port microscopic program instrumentation in conjunction with Ada, the underlying tech-
nology is mature for non-performance oriented testing and should be easily extended to
this arena.

It is common to use distinct processing paths in the software to partition the
universe of possible inputs to the software into “domains.” A frequently useful methodol-
ogy can be based on simply specifying the proportion of the total number of paths that

20

must be covered by the test data. This is not, however, a simple structural c: ‘ge test
since these paths can involve the complex intertwining of structural features . g., the
multiple and interleaved repetition of loops). Like the structurally-based tests, simple
path coverage methodologies tend to be useful in generating necessary, but not always suf-
ficient, tests.

Frequently, the domains have a mathematical or geometric structure that can be
exploited. The “domain strategies” use previously gathered information about the likeli-
hood of certain kinds of errors involving the definition of domains to generate tests.
When depicted graphically, these tests might specify that a certain subset of the test
points should be selected on one side of a domain boundary, a second subset on the other,
and at least one test point should fall exactly on the domain boundary. If such rules
guarantee that certain kinds of domain errors will be revealed (if present) then the
domain strategy may be an effective necessary test.

One instance of this technique, partition analysis, requires the existence of a for-
mal specification for the software and assumes that it is correct. Using this technique, the
input domain is then divided into sets that are treated uniformly by both the specification
and the software as implemented (Richardson and Clarke 1985). Research to date in this
area appears promising; however, much work remains to be done if this is to be appropri-
ate for application to large, complex software systems.

Tests that specify error coverage criteria are passed when test data are supplied
that demonstrate that the given errors do not occur in the software. If the errors have a
relationship to the test objectives, then error coverage tests are useful sufficient tests of
some kinds of objectives. As a methodology for ruling out various kinds of errors, at least
minimal error coverage tests are usually necessary. A common category of error cover-
age tests are mutation tests. These are the software equivalent of the single fault cover-
age tests frequently used for digital hardware. In mutation tests, software “faults” are
modeled on errors that programmers are likely to make (DeMillo, Lipton, and Sayward
1978). Because of its statistical basis, mutation testing can be tailored to a given set of
test objectives. Furthermore, it has been shown that by selectively applying mutation
operators during the testing process, virtually all modern software testing strategies can
be implemented (Walsh 1985). Efforts are currently underway to extend this technique
for application to large Ada-based software systems (Appelbe et al. 1988).

Functional tests demonstrate the correct implementation of functional specifica-
tions and requirements. These may be either operational or technical specifications.
While many functional testing methodologies are specific to the application at hand,
several general concepts recur. A common goal of functional testing is to stress the

21

functions. That is, to demonstrate the behavior of the software when limits and capaci-
ties are approached and exceeded. At the unit level, this may involve selecting tests that
correspond to extreme or “out-of-spec” values for unit parameters or input variables. At
the system or subsystem level, the corresponding stress test may involve test data that
saturates a given system capability. While stress testing is seldom sufficient to determine
whether or not objectives have been met, these functional tests are frequently necessary
to exhibit the performance parameter limits of the system and to exhibit failure modes
and effects.

Another useful functional test methodology is “random” testing. Random tests
involve the selection, generation, or extraction of test data from a statistical or stochastic
source. During unit testing, the statistical source may be a generator that samples from a
sourge according to a certain probability distribution. During integration testing, a simu-
lator may provide the statistically meaningful frequencies of occurrence of data values,
while during operational testing, the statistical variations in the actual mission profiles are
the source of randomness. If the test designer has confidence in his knowledge of the
underlying probability distributions, then random testing can be uséd to effectively esti-
mate operational reliabilities and other statistical parameters (Duran and Ntafos 1981;
Currit, Dyer, and Mills 1986). In these instances, random tests are used as sufficient con-
ditions on the test objectives.

An operational test is another sort of functional test that explicitly addresses
operational characteristics. Penetration testing is one type of operational testing that is
of special interest to the security community. Operational tests are carried out in the
operational environment using typical operator personnel. Although there are obvious
analogies with “random” tests, operational tests are necessary to assess risk. For exam-
ple, a system that cannot be sustained in a safe condition during an operational test is
very unlikely to be worthy of deployment (DeMillo et al. 1987).

The extreme quality requirements of Ada-based high assurance systems result in
the requirement to design and build testable software. This implies more than the need
for modular, simple code. It implies that rather than depend on the insertion of probes at
test time, ports must be designed and built into the software to allow visibility, as needed,
during software execution. Macroscopic program instrumentation provides visibility to
the tester in a form that allows the assimilation of information about the execution of
large pieces of software. This capability is essential for high assurance software applica-
tions. During early test phases many properties of the running programs may be invisible
to the tester without instrumenting devices such as counters that indicate which branches
and paths have been executed. During tests of integrated software systems, it becomes
even more difficult to peer into dynamic aspects of the software. In an integrated system

22

running on an operational hardware set, it is usually very hard to directly observe such
dynamic aspects of software performance without instruments that are tailored to the
task. The alternatives are generally labor-intensive and are frequently not c~st-effective
to implement. For example, a common way of gaining visibility into such detailed
features of the software is to interrupt an operational test so that the entire contents of the
computer’s memory can be “dumped” to magnetic tape or disk. This dump is then
analyzed to extract information about the state of the software. Clearly this procedure
cannot be used very often during the course of a test. On the other hand, it is frequently
possible to place “software hooks” into delivered software so that hardware and software
instruments can be conveniently attached during testing. It has been found that, when
instrumentation requirements are recognized early in a program and are included in test
plans and software requirements specifications, the quality of testing is improved.

Dynamic analysis has suffered in the past due to a reluctance to apply the
requisite computing power. It is encouraging that recommendations are now being made
to “exploit the advanced computer technologies to simplify the more difficult tasks such
as software development and testing” (Eastport 1985, p. 15). Testing is an area that will
benefit greatly from such a strategy. By cleverly combining modern testing techniques and
advanced computer technology, it should be possible to thoroughly test the vast majority
of Ada-based high assurance software applications expected in the future (Krauser and
Mathur 1988).

3.2.3 Formal Verification

The goal of formal verification is to rigorously demonstrate, using mathematical
logic, that software is consistent with its specifications. Techniques that have been
applied to this problem include the use of input-output assertions and mathematical
induction. Although the quest for a formal proof of the correctness of software may be
appealing and research has progressed, some researchers have fundamental reservations
about the method (DeMillo, Lipton, and Perlis 1979). Furthermore, although formal
verification may achieve its goal, we still have no assurances that proven software will
perform satisfactorily in its operational environment.

In spite of the limitations of this analysis method, formal verification research is
being actively conducted. Notably, efforts to evaluate trusted computer systems strive for
formal verification of designs and source code with respect to its specification (DoD
1983). Examples of technology efforts include the GYPSY project and the Vienna
Development Method (VDM). Formal verification using Ada has been the subject of
several workshops (Roby 1985).

23

3.2.4 Quality Assurance and Verification and Validation

Quality assurance and verification and validation are performed throughout the
software development life cycle with the ultimate objective of building quality software.
When properly applied, each activity has a distinct but complementary purpose (Fujii
1978). Quality assurance is concentrated on the definition of an appropriate approach to
the creation of the software followed by continued monitoring of the development process
for adherence. Verification and validation, on the other hand, is a continuous technical
review of the software development products. (This use of the term “verification” should
not be confused with Formal Verification.) In this context, verification is the process of
reviewing the products of each step of the life cycle for consistency with the products of
the previous phase. Validation is the process of testing the final software for satisfaction
of the original requirements. Though each of these processes could benefit from addi-
tional automated support, the basic concepts are well established in practice.

3.2.5 Problem Reporting and Tracking

Approaches to problem reporting and automated systems for tracking the status
of problem corrections are readily available. However, software with a requirement for
fault-tolerance presents a unique need in this area. If a fault exists in the software such
that fault-tolerance mechanisms are exercised, it would be desirable for the fault to be
reported (e.g., through the use of an observation package to observe and record the
event) even though the system failure was averted. In this manner, faults may be
corrected as they are encountered, thereby reducing future stress on the fault-tolerance
mechanisms (Choi et al. 1988).

3.2.6 Regression Testing

An important class of late life cycle tests is the regression testing that must be car-
ried out to assess the impact of software changes. Key issues of regression tests revolve
around the expense of re-running large numbers of individual tests. While these concerns
are influenced by project management strategies, some technical aids are useful. Being
able to assess the impact of program changes requires two-way traceability between pro-
gram text and the historical record of test issues. Furthermore, errors, failures, and
corrective actions should be reported and tracked to enhance traceability. Capabilities
for effective and efficient regression testing are essential to the dependable operation of
any software system. Although somewhat primitive systems do exist to control test infor-
mation and support limited automated regression testing, the certain evolution and
expected size of many systems make currently available alternatives inappropriate for the
tasks at hand.

3.2.7 Quality Measurement

Control of a process implies the ability to specify quality requirements, predict
success, track progress toward goals, and assess achievements. Today, software develop-
ment is not a controlled process. However, this problem has been under investigation by
the National Aeronautics and Space Administration (NASA), the Naval Weapons
Center, the Rome Air Development Center (RADC), the Software Engineering Institute
(SEI), and others for some time (Conte, Dunsmore, and Shen 86).

Software measurement and evaluation has been criticized for its lack of ties to
basic scientific principles (Browne and Shaw 1981). Key omissions include the identifica-
tion of invariant principles or relationships between basic measures, and hypothesis for-
mulation and validation. Efforts to date have centered on modifying standard definitions
into measurable software-related entities that bear little resemblance to those used
throughout the remainder of the scientific community. One example is the following defin-
ition of maintainability: the ease of effort for locating and fixing a software failure within
a specified time period (Bowen, Wigle, and Tsai 1985). A brief comparison of this defini-
tion with that provided in Section 2.5.2 reveals the omission of several key concepts,
including the determination of a probability of restored functionality and the specification
of the intended maintenance environment.

3.2.8 Reliability Modeling

An important but elusive goal is to faithfully model software reliability. A
number of software reliability models have been proposed over the years. Most of these
models borrow heavily from the field of hardware reliability and, as a result, the basic
assumptions of the underlying probability distributions are to be questioned and carefully
assessed prior to their use (Goel 1985, Rowland 1988). As opposed to efforts to model
software reliability independent of the system, research is beginning to consider software
reliability in the context of the system (Hecht and Hecht 1986).

3.3 FAULT TOLERANCE

Available technology for fault tolerance comprises methods and mechanisms to
enable a system to continue operation in the presence of faults. Hardware fault-tolerant
techniques are well established and form a vital part of any reliable computing system.
The fault-tolerance strategies generally employed for hardware components rarely con-
sider design faults. For software, however, design faults are a major concern.

Application of fault tolerant methods as a form of assurance technology requires
system designers to:

25

o Identify components requiring fault-tolerance based on the criticality of the
functions performed.
e Develop fault detection and recovery mechanisms.

Fault tolerance is a form of computing in the presence of noise. It is a basic theoretical
limitation that the only way to assure correct computations is to build some form of redun-
dancy into the system (Winograd 1962). In normal circumstances, redundancy is in the
function domain (e.g., redundant components) or the time domain (e.g., roll back and
restart), although other domains are possible. Whatever the approach, the following
events appear to be necessary for effective fault tolerance:

e Detect faults and transition from normal to anomaly processing.

¢ Limit the extent of failure: isolate fault, limit fault propagation.

e Recover from failure: determine extent of failure, roll back to consistent state,
propagate failure reports.

¢ Prevent recurrence: trace cause of failure, reconfigure system components.

3.3.1 Identification of Critical Components

A technique for identifying critical components of a system is fault tree analysis,
which was adapted for use with software by Leveson (Leveson and Harvey 1983). This
techniques starts by assuming that a critical failure can occur, which is called a loss event.
The sources of failure are then derived by working backwards from the loss event. Each
contributing failure may have several sources, producing a tree structure of possible
faults. This analysis is continued until the leaves of the tree represent individual software
modules. This process, therefore, can identify conditions, components, and design
shortcomings that can lead to critical failures.

3.3.2 Fault Detection

Redundant software is one approach to fault-detection. This method is similar to
the hardware technique of active redundancy, which employs multiple units to perform
identical functions in parallel. In hardware systems, arbitration of conflicting results is
handled by “voting” circuitry. In software, additional statements are required to (i)
determine if agreement has been reached and (2) determine which result to honor in the
event of a conflict.

Assertion monitoring provides an explicit check for the plausibility of results or
system states. This check is performed during program execution and is used to detect
faults without redundancy. This method may have some advantage over multi-version
voting techniques. (Leveson and Shimeall 1983).

26

N-version programming is another approach to fault-detection that requires
several independent versions of a piece of software be produced for a specific applica-
tion, usually from the same specification. These versions are then executed in parallel
and the outputs are subjected to a majority voting process. The voting process determines
the results which will be carried forward for use by the remaining components of the sys-
tem. Maximum utility is provided when identical requirements can be stated in highly dis-
similar terms. Since developers often make similar mistakes, researchers have suggested
the need for additional research to identify common errors that result in software faults
(Avizienis 1976; Knight, Leveson, and St. Jean 1985).

3.3.3 Fault Isolation

Once it has been determined that a fault has occurred, it is imperative to confine
the propagation of the anomalies at that level of operation. The propagation of subse-
quent faults will further degrade the performance, reliability, and survivability of the sys-
tem. Modular organization of software is a demonstrated asset to fault-recovery (Scott et
al. 1984). It is also particularly beneficial in limiting the extent of failure propagation
(Krishna, Shin, and Butler 1984).

3.3.4 Recovery Mechanisms

Exceptions and exception handling provide a mechanism for transitioning within
a fault-tolerant framework. This framework provides a clear separation between normal
and abnormal activities. The occurrence of a fault (detection of an error) results in the
raising of an exception. The handler associated with that exception will be evoked and
some fault handling activity appropriate to the situation will be initiated. Some research
(Goodenough 1975) has suggested the use of exceptions for general processing, others
(Liskov and Snyder 1979; Cristian 1980) have proposed reserving the use of exceptions to
the mechanism of fault-tolerance.

Recovery blocks (Avizienis 1976) incorporate error detection, backward error
recovery, and fault treatment. The implementation of a backward recovery mechanism
as a part of this framework precludes the need for a damage assessment strategy. The
backward error recovery mechanism assumes the elimination of all damage caused by a
faulty module. This technique provides a coherent framework for encapsulating redun-
dancy in a software system (Leveson and Harvey 1983).

3.4 ACQUISITION AND MANAGEMENT PRACTICE

All of the software technology reviewed previously is employed in the context of
some organization’s approach to doing business. On Ada-based software system
developments, the approach is usually a combination of contractually imposed customer

27

standards and the contractor’s internal standards and procedures. This section will
examine the influence that management practices exert on technology and vice versa.

3.4.1 Life Cycle Models

The relationships between the software development activities of specifying,
designing, coding, testing, and maintaining the software are defined by a variety of life
cycle models. It is clear that virtually all software systems evolve. However, there is no
single approach to the evolution of software. The choice remains as to whether the evolu-
tion will occur as the waterfall model repeated sequentially, for example, or continuous
multiple parallel developments. Other models cycle through the specification phase until
satisfactory results are achieved, then design and build pieces of the system. Another
variation is to completely specify and design the system, and then build and test in smaller
pieces. As with the majority of the software technology discussed, there is little to no
objective evidence available to aid in the choice of a development model whose use will
result in high quality software for a given project. The selection must be guided by
engineering judgement and the expected timing of the availability of information about
the system requirements (Martin 1987).

3.4.2 Organizational Approaches

The involvement of multiple independent groups is important to the development
of high assurance software. This is necessary if misconceptions about the operational
environment and misinterpretations of requirements are to be avoided. Therefore, com-
monly employed techniques include the use of independent test teams, independent qual-
ity assurance groups, and independent verification and validation organizations. In cases
where N-version programming is being used to build fault-tolerance into the system, mul-
tiple independent development groups are employed. The basic principle being followed
is to minimize the influence of individuals or single organizations on the ultimate quality
of the system. In addition to the organizational independence, the evolution of modern
systems may force the use of parallel development groups. Multiple concurrent develop-
ments are not uncommon in evolutionary systems. The required independence and paral-
lelism in development organizations, as well as the size of many development projects,
create extreme demands for effective management control and careful coordination.

3.4.3 Configuration “Management

The complications that arise due to the choice of life cycle model and organiza-
tional approach demand the disciplined application of a sophisticated configuration
management system. The only scenario in which configuration management is not a con-
cern is that where error-free software is produced by a single person to satisfy a

28

requirement that will never change. This is not the expected scenario for the develop-
ment of Ada-based high assurance software. Although a number of configuration
management systems are commercially available, their capabilities need to be carefully
examined to determine if they support Ada-specific system structures, systems with large
numbers of components, and evolutionary models that incorporate multiple, concurrent
developments of individual system functions.

3.4.4 Effect of Standards and Quality Resources

Examination of past programs has determined that the primary influence on the
choice of software development technology has been the standards and requirements as
defined by contractual agreements (Redwine et al. 1984). This implies that conscious,
careful acquisition and management decisions must be made with respect to the desired
software technology.

Ideally, every project should employ the most qualified and talented personnel
available. Few projects are fortunate enough to achieve this goal. Instead, a software
development team is composed of a mixture of talented, experienced individuals, con-
scientious but less-skilled persons, and unknown quantities that are just entering the work
force. The equalizing factors that can be applied to balance the risk of this less than ideal
situation are technology and training.

Computer power should be used to the maximum extent possible to alleviate the
mundane demands on personnel resources. Prior to relying on support software for the
injection of some degree of quality in a software system though, confidence in the support
software itself must be justified. In particular, testing tools and compilers must be tested
and validated to ensure the advertised functions are in fact being effectively performed.

3.5 SUMMARY

The development of correct and accurate specifications is an essential prere-
quisite to the development of high assurance software. There is virtually no chance of
success on large projects without a good set of specifications to drive all development
activities. Examples of promising specification technologies include prototyping, execut-
able specifications, and computing-criented specification languages and processors. Also
necessary is specification technology that will allow the definition of quality and
assurance requirements in operational terms.

The only way to gain confidence that the software will perform as intended in the
operational environment is through the use of systematic dynamic analysis techniques.
Some of the promising techniques stress the observation of software performance under
varied conditions. These include program mutation techniques and macroscopic program

29

instrumentation. Other techniques emphasize the determination of a minimal, adequate
set of test data. Software test data generation techniques in need of further development
include symbolic execution and input space partitioning.

Virtually no research exists on operational testing of software. Appropriate
definitions and models have yet to be formulated. Systematic techniques for operational
testing in such areas such as real-time, parallel, and secure systems ..re, for the most
part, lacking. Developing a technology base in these areas should be given the highest
priority.

Selected software testing techniques are mature enough that extensive investment
in research activities is not needed to gain the benefits of their utilization for Ada-based
high assurance systems. The needs of these techniques lie in the area of technology
modification and transition, specifically to the arena of Ada-based systems. In some
cases, further modification may be necessary to scale-up the capabilities for application
to large systems. Examples of testing techniques appropriate for transition consideration
include static analysis, functional testing, random testing, and regression testing.

Quantitative models and measurement techniques are needed to provide precise
methodologies for requirements specification, determining system development status,
and predicting future performance of the system. Research in this area has almost
exclusively centered on simple adaptations of existing statistical models, statistical data
analysis, small-scale experimentation, and the compiling of anecdotal evidence.
Research is needed in approaches that have deeper scientific roots. The development of
mathematical cause-effect models and execution of large-scale experiments to validate
model predictions are essential to progress in this area.

Finally, quantitative and reliable cost-benefit data are almost completely lacking
in the software engineering community. Project managers must either believe marketing
claims of vendors or conduct original research to extract cost-benefit trade-offs from
analytical studies. Neither approach is satisfactory for Ada-based high assurance sys-
tems. There is a critical need for demonstration experiments structured to provide quan-
titative indicators of risks incurred by: (a) selection of a given technology, (b) selection of
an alternative technology, and (c) use of ad hoc methodologies. These indicators when
coupled with precise estimates of costs would provide sufficient data for rational decision
making when structuring a software development program.

30

4. ASSURANCE REQUIREMENTS

Of critical concern is how and when to set assurance requirements and how to
determine when they have been satisfied. This section outlines a process for:

o Identifying the system level risk drivers associated with high assurance software
¢ Refining the required characteristics for critical software functions

¢ Defining the critical issues to be addressed by the assurance program

o Establishing the assurance program to address those issues

o Setting software assurance requirements

¢ Applying assurance methods

4.1 DERIVING ASSURANCE REQUIREMENTS
Assurance requirements will arise from two mechanisms:

¢ Derived assurance requirements: these are obtained by risk analysis of the sys-
tem and are, for example, typically related to the cost of failure of cnitical sys-
tem functions.

¢ Imposed assurance requirements: these usually result from special certification
(e.g., flight critical software) or safety needs (e.g., nuclear) of the system.

Whereas derived requirements are used to ensure a specified level of risk in the system,
imposed requirements are more useful for regulatory purposes—to ensure a specified
level of assurance on all systems of a given type, for example. In either case the overall
goal is to balance risk.

4.2 SYSTEM LEVEL SOFTWARE RISK DRIVERS
4.2.1 Critical Functions

A critical function is any system function without which the system would fail to
satisfy some or all of its operational objectives. The prime concern in systems that imple-
ment some or all of their critical functions in software is whether or not the software has
been given a balanced treatment with other system components. Experience has shown
that when these considerations are pushed later into the development process, latent
problems with the software are more difficult to eliminate and the resulting systems are
less well-suited to their objectives.

3

To emphasize the balance that should be sought between the software and the
hardware components that implement critical functions, the term critical software com-
ponent is used. A critical software component fulifills a requirement for a key function.

4.2.2 Mission/Function Matrix

A matrix relating operational requirements of the system to system functions is
the primary source of information about how the capabilities have been partitioned
between hardware and software. These partitions will be important in determining
required characteristics, in defining error or failure categories and in isolating and
correcting deficiencies noted during the remainder of the test program. It is especially
important that proper engineering studies have led to the establishment of these parti-
tions.

4.2.3 Identifying Risk in Software Functions

Operational requirements reside in the operational concept descriptions of the
new system. System functions are designed to meet the operational objectives. An
understanding of the sources of risk in each of the software implemented functions thus
identified is an important part of overall system risk assessment.

New software functions represent the highest risk, since they involve not only the
design of the software but also the use of new concepts, theories and algorithms. Often,
these functions have only been demonstrated in laboratory or experimental setting and no
operator personnel have been exposed to the functions under realistic conditions. Ques-
tions of suitability (e.g., availability, reliability, safety) are typical for these functions and
the early involvement of users and operational testers is encouraged. Risk reduction pro-
cedures such as prototyping, simulation and evolutionary acquisition may also be
appropriate.

The transition from manual functions to automated functions is notoriously hard
to manage and assure. Functions performed by humans are usually difficult to specify. It
is therefore hard to test conformance of the automated capability to a fixed technical
specification. On the other hand, the functions themselves are usually mature, so suita-
bility risks may be somewhat reduced. In either case, there should be a clear plan for
determining the extent to which the previously manual capability has been faithfully
reproduced.

Re-use of mature software (i.e., existing software that has been extensively used
without failure or other defect for a significant period of time) or reimplementation of
well-understood functions represents relatively lower risk. However, for a system with
extreme reliability requirements the extent to which the re-used components have been

32

subjected to rigorous test and evaluation may present special risks.

Electronic interfaces are responsible for interoperability, communication (in the
underlying network) and man-machine communication. These interfaces are frequently
software intensive. Even if the hardware and much of the software is off-the-shelf, much
of it will be developed under the development program. Furthermore, many aspects of
the software architecture will depend upon and anticipate functions in interfaces. Such
issues as early estimation of performance impact of interfaces, isolation and tolerance of
system functions from interface faults, adequacy of the man-machine interface and the
effect of the various interoperability requirements on the overall system design are criti-
cal.

4.2.4 Other Risk Drivers

The use of Ada in current systems is a significant source of risk. Support environ-
ments are only beginning to mature and the reliability of Ada compilers has not yet been
. tested to any useful extent.

A common source of operational software problems is the difficulty of maintain-
ing and supporting the software once it is deployed. Common danger signals include the
use of proprietary design tools and methods that will not be available to maintenance
organizations. The lack of experience with Ada is a significant source of risk here.

4.3 REQUIRED CHARACTERISTICS
4.3.1 Goals and Thresholds

Most operational requirements for availability and maintainability are expressed
in terms of goals. A necessary component of system level test planning is the definition of
goals and thresholds for the critical software components. The threshold requirements
represent the minimum levels of operational suitability (e.g., availability) and effective-
ness (e.g., maximum workload at an operator’s station) below which the system will be
not deployed. Operational goals and thresholds are important for setting design criteria
and priorities. Operational thresholds are critical for testing.

Without a definition of threshold requirements, the system is at risk during the
acquisition phase. It is commonly recognized that extreme requirements will not be met
in the initial releases of the systems but rather will be achieved during reliability growth
programs. The assurance plan should then specify the range of acceptable system relia-
bility. In other words, having failed to achieve the goal, by what criteria is the system to
be evaluated and deployed?

33

4.3.2 Software Specific Characteristics

Special care should be taken to ensure that required software characteristics have
been identified. Software characteristics should be evaluated at the appropriate stage of
system development rather than at arbitrarily imposed milestones. It is, in general, a
mistake to wait until hardware and software are integrated to resolved outstanding
software test issues.

Late evaluation of software characteristics opens the following problems:

o Error masking: hardware and software errors may in some instances mask
each other, making reliability, availability, and maintainability (RAM) ana-
lyses impossible.

o Error partitioning: without a reliable estimate of software failure rates, the
partitioning of test events into hardware, operator, and software failures will be
subjective and inexact.

These problems would, of course, amplify the already formidable problems of evaluating
complex high assurance systems.

4.3.3 Critical Assurance Issues

A critical issue is any aspect of a software system’s capability that must be ques-
tioned before the system’s overall worth can be estimated. The software issues are of pri-
mary importance in reaching a decision concerning whether or not the acquisition should
progress into later programmatic phases. This decision should be based in part on the
determination that the goals and thresholds defined for the required software characteris-
tics have been met and, in any case, should be based on an assessment that software and
hardware risk have been balanced by past and future test and evaluation.

Regardless of assurance approach, the critical issues should address the high-risk
nature of the software aspects of the system.

4.4 'ADEQUACY OF ASSURANCE PROGRAMS
4.4.1 Management

The following procedures have been established in DoD Directive 5000.3, “Test
and Evaluation,” for judging the adequacy of assurance program management. Organi-
zational concerns will of course be tailored to the special concerns of the system and some
organizational mechanisms may not be appropriate in all instances. However, the guide-
lines apply in all circumstances:

e Early identification of independent development and operational test

34

organizations

¢ Early involvement of independent testers in requirements definition and
analysis

o Clearly defined decision paths for test and evaluation

¢ Effective independent verification and validation (IV&V) that highlights and
prioritizes outstanding or unresolved critical issues

The assurance program itself should be integrated with the design and acquisition
of the system. A total program of risk reduction through incremental verification and
validation represents the best structure for managing and evaluating the status of the
software as it evolves into a deployable system.

4.4.2 Integrated Schedule

The integrated schedule displays the time sequencing of test and evaluation for
the entire program and related key events in the acquisition decision-making process.
Included are such events as program decision milestones, key subsystem demonstrations,
test article availability, critical support resource availability, critical full-up system
demonstrations, key operational test events, first production deliveries, and initial opera-
tional capability date.

The schedule should also include such events as key software subsystem demons-
trations and software test article availability. The schedule should include adequate
allowance for repair and retest of software, as well as time to perform the original tests.

Support resource availability should be displayed in the schedule. Software
assurance tools fall into this category and deserve special mention. Since these tools are
themselves software, their development and acquisition are subject to the same risks as
any other software development. The availability of these tools should be included in
early test planning and tracked by the test program management since a late delivery
could impact the entire test program.

4.5 SOFTWARE ASSURANCE REQUIREMENTS
4.5.1 Demonstrating Required Characteristics

Assurance technologies should be designed to demonstrate required characteris-
tics. In particular, the aim of development testing is to ensure that the phases of system
development result in intermediate ‘‘validation products”(see Figure 2). These are used
to demonstrate the three kinds of consistency that affect the flow of requirements and
specifications during system development:

o Propagated consistency: at each increment of the development process,

35

VALIDATED/DEPLOYED
SYSTEM

/

36

VERIFIED
SYSTEM
TEST
ARTICLE
BASELINE
SYSTEM
SPECIFICATION csa
SOFTWARE SOFTWARE
DESIGN < FUNCTIONS
|
N\ /
DETAILED SOFTWARE SOFTWARE
GSGN SPECIFICATION COMPONENTS

Figure 2. Incremental Verification and Validation Process

validation products should be consistent with their immediate predecessors
(e.g., software designs should be consistent with software specifications).

e Self-consistency: each validation product should be free of internal contradic-
tions (e.g., the system design should be self-consistent).

o Consistency within increments: at each stage of integration, the product of the
current increment should be consistent with the corresponding validation pro-
duct (e.g., the baseline system should be consistent with the system design).

4.5.2 Validation Products

A validation product is any engineering product whose primary purpose is valida-
tion of user requirements. Unlike auxiliary assurance products like test reports, a valida-
tion product represents the system during an assurance activity. Assurance products are
shown outlined in irregular bubbles at the left hand side of Figure 2. Notice that, since
each validation product is itself a surrogate for the system, care is taken to ensure con-
sistency between the validation products and the corresponding intermediate system
design products (e.g., executable speciﬁéations must be consistent with software specifi-
cations).

To the maximum extent possible, the validation products cited in Figure 2 should
lend themselves to early operational demonstrations of key functions and capabilities.
As described above, demonstrations that occur after hardware-software integration tend
to obscure deficiencies that involve hardware-software interactions. In general, proto-
type demonstrations using typical operator and maintenance personnel are preferred dur-
ing early development phases.

Development testing is the latest stage at which individual software modules are
available for direct stimulation and manipulation. This makes software development
testing a critical element of the overall test program. Most systematic testing that takeswg,
place during this phase attempts to cover, stress or overload software functions and
parameters. This is a critical concept since after software modules are integrated and
linked, it will not, in general, be possible to address such test issues. More specifically, if
a particular fault-tolerant module M is supposed to detect and recover from fault events
A, B, and C, it is desirable to exercise the module in the presence of the events A, B, C,
AA, AB, AC, BB, BC,..., ABC, and so on. The events in question may in turn be trig-
gered only in the presence of data items that exceed specified range values. While it is
generally possible to use test drivers to supply M the required values, external manipula-
tion of those values by systems test methods is frequently not possible.

37

4.5.3 Handling Deficiencies

The relationships between test events, software deficiencies, and unresolved test
issues are more difficult to discover the later in the acquisition process they arise. Relat-
ing software test results to system-oriented test issues helps to ensure that responsibilities
for deficiencies are properly allocated between hardware and software, and the test plan
should include the necessary analysis for this activity. Early development testing is still
the best opportunity for tracing system characteristics to design characteristics.

Test deficiencies should be traced to the corresponding required characteristics.
In particular, vague references during contractor-conducted testing to ‘“successful
software demonstrations” or “no problems with the software” should not be acceptable.
By the same token, jargon is especially difficult to interpret in test reports. Phrases like
“buffer overflow causing module JXAS115 to hang” can camouflage software deficien-
cies. At each review phase, the essential questions are:

e Were the development assurance objectives met?
¢ With what degree of confidence?
o What behaviors led to the observed anomalies?

Partitioning of hardware and software deficiencies is most easily carried out dur-
ing early development testing. Plans should specify methods for deriving early software
test articles in order to accomplish this partitioning.

4.6 APPLYING ASSURANCE TECHNOLOGY

This section presents a guideline for planning and conducting software assurance
activities. General approaches to structuring and monitoring the assurance program have
been defined and discussed above.

There is relatively little experience with high assurance software systems (i.e.,
with testing systems having extreme reliability requirements). It is certain, however, that
the problems encountered in testing these will be at least as hard as those encountered in
tests of other software intensive systems. On the other hand, there is reason for optimism
about the applicability of emerging assurance technologies:

¢ Auvailable assurance methodologies are not sensitive to the application domain.
That is, the assurance methodologies that are available are valid for any
software system, including those with high assurance requirements.

¢ Hazard types are generic. The software risk drivers that will be addressed dur-
ing the assurance program are defined in terms of generic software concepts,
not specific architectural properties. The unique aspects of high assurance lie

38

in the high coverage requirements for these hazards rather than in the kinds of
hazards.

4.6.1 Identify Critical Functions and Components

As described above, not all software components present the same levels of risk.
Software functions should be partitioned and related to critical operational requirements.
The system operating concept provides a coarse guideline for carrying out this partition-
ing. Critical functions fall into one of two operating categories:

¢ Functions that provide for transition (e.g., from hot standby to standoff or to
an operating mode) are the most critical in the system since the system function
cannot be sustained during catastrophic failure without these functions.

¢ Emergency functions that must be sustained qver specified periods if the system
function is to be carried out under expected workload levels.

4.6.2 Determine Thresholds and Assurance Issues

Each of the operational requirements should be accompanied by a threshold
requirement—that is, a floor above which the system must be sustained if safe services
are to be provided within the specified performance envelope. Thresholds are esta-
blished for critical software functions by tracing them to corresponding thresholds in the
operational requirements/system function matrix. For example a threshold requirement
for availability of at least one backup for a specified set of functions can be transformed
into thresholds on the availability of the functions that transfer from an operating mode to
the backup.

Application-dependent and architecture-dependent information are used to
determine critical assurance issues for testing.

These issues are usually expressed as special risk factors or hazard classes that,
unless removed or compensated for by architectural means, will cause the function to fall
below threshold requirements and to therefore be unsuitable for deployment. Some typi-
cal issues include the following:

Containment of Non-Development Software

It cannot be assumed that risk reduction will have taken place on non-develop-
ment (third party) software. It is probably the most severe risk driver. Even the most
rigorous fault-tolerant mechanisms cannot cope adequately with these faults since the
non-development items have unknown and in many cases undefined failure modes and
effects.

39

Timing and Synchronization

Real time design has been highlighted on many previous occasions as a principal
risk driver. Without careful incremental testing at the unit, module, and later levels, it is
nearly impossible to verify coverage of these faults with any useful degree of precision.

Load and Stress

These are hazards that result from loading operational parameters at or near
specified limit values. These loads stress internal parameters which then interact with
system functions in unpredictable ways. For example, operational loads on a operator’s
position may result in the overflow of internal tables that result in loss of data in track files
(a common failure mode in radar systems). Generating these loads during operational,
acceptance or system tests is generally not feasible. Without incremental assurance at
the unit, module, subsystem, integration and hardware-software integration levels, it is
nearly impossible to verify coverage for these faults with any useful degree of precision.

Hazards in Assurance-Enhancement Mechanisms

The criticality of these as issues depends to a large extent on architectural con-
siderations. If, for example, a critical function does not depend on tolerating hardware
and software faults, then faults in the fault tolerant mechanisms may be less important.
Nevertheless, risk drivers in the fault-tolerant parts of the software are likely to be abun-
dant.

As the complexity of the fault-tolerant mechanisms increases so does the risk
associated with uncovered faults in those mechanisms. Recovery blocks, coordinating
software for redundant components, votes, and roll-back mechanisms all contain such
complex mechanisms. Coverage verification requires an independent but equivalent fault
model implemented in a suitable test environment and is therefore difficult to achieve.

Latent or Residual Faults

These are faults that, by virtue of their placement in the software (relative to the
distribution of input values), or factors indigenous to the application, acquisition strategy,
or contractor’s software development practices are likely to remain in the software at any
specified point in time. This class includes latent design faults and defects such as those
that might arise from incorrect design specifications, incomplete requirements or
improper documentation. Without careful incremental testing at all levels, it is nearly
impossible to verify coverage for these faults with any useful degree of precision.

40

Conducting these tests in a controlled and ircremental fashion as shown in Figure
2 is absolutely necessary to the success of the overall test program. The principal reasons
for emphasizing the incremental approach are the following:

e Many critical issues can only be addressed by incremental application of fixed
risk reduction mechanisms.

e The cost of system level application of many required assurance methods is
prohibitive unless the methods have first been applied at lower levels of integra-
tion.

e Early validation products and subsystem demonstrations allow early opera-
tional assessments of suitability.

e The cost of locating and correcting software faults increases by a factor of 100
or more as the the system is integrated.

In assessing the assurance technologies to be used, it is important to select those that:

¢ Can be applied incrementally at all stages of development from requirements
modeling to system testing
e Are designed to address the most likely critical issues

In many coverage methods, the expense increases non-linearly as component size
increases. It is therefore required that these tests be applied in incremental fashion to
keep testing costs manageable.

The validation products mentioned in Figure 2 must be viewed as engineering pro-
ducts. They should be specified in statements of work and the integrated schedules
should account for their development. Applicable standards should be interpreted to
require such products.

There is at least one school of thought in the design community that does not
include individual software units as validation products. Avoiding or delaying access to
units for purposes of assurance always increases risk.

4.6.3 Determine Assurance Objectives

The critical issues should also determine a quantitative test objective for each
test. This distinguishes the systematic approach to software testing from less rigorous and
less effective “test-a-lot” approaches. It is essential that each test that is planned and
conducted be accompanied by a clear set of criteria for success or failure. Failure to
meet a quantified test objective must be treated as a deficiency to be resolved by a later
critical test issue.

41

4.6.4 Coverage of Hazards

Structural Coverage

Structural coverage tests exercise every component (e.g., statements, deci-
sion-to-decision branches) of critical functions. High assurance requires high structural
coverage. For example, every statement of a program must be executed to demonstrate
that it is free of statement-level faults. Any set of tests that do not execute every state-
ment at least once fail to achieve structural coverage at the statement level.

Domain Coverage

Domain coverage partitions actual component behaviors or specified program
behaviors into classes. These classes may relate to safety states (e.g., safe vs. unsafe) or
to finer-grained distinctions such as whether or not a given function is performed. The
test strategies surrounding domain coverage are used to address the following test issues:

e Presence of timing and synchronization faults: the domains represent event
sequences that induce synchronization dependent information (e.g., whetaer or
not a pair of functions is driven to deadlock].

o Latent or residual fauits: the relationship “stween specified and implemented
domains can be systematically explored for “what-if”’ analysis and to deter-
mine missing paths and conditions.

Faults and Errors

These tests address all of the issues for which a precise fault model has been iden-
tified. The tests then determine that, in the presence of a specified fault, the imple-
mented software component behaves as specified or not. If the faulted component
behaves differently than the original, then the test has either uncovered an error in the
original or has demonstrated that the original does not contain that specific error. This
method, sometimes called mutation analysis, can be automated.

Functional Models

Functional tests use properties of the underlying application specific model to
construct tests that give a high degree of confidence that the model has been satisfied.
Suppose, for example that two digital filters F and G implement polynomial transforma-
tions on their inputs X, ... , X,. Then there are exact tests to determine whether or not
F(Xy, ... , X,) = G(X,, ... , X,). Other functional tests use random selection of input

42

values chosen according to specified distributions to estimate operational reliability. An
important category of functional tests includes those operational tests that are conducted
with early validation products.

Interface Functions

Functional tests that stress or exercise interfaces between functions (particularly
those used in combination with error-based tests) are the only way to address some fault
classes such as load and stress faults and faults in nondevelopment software.

For example, tolerance of fault in nondevelopment software is tested by develop-
ing a fault model of interaction between development and nondevelopment software and
simulating the faults at the interfaces. By the same token, stress faults are tested by deli-
berately driving parameters and constants outside specified envelopes. ’

43

5. RECOMMENDED STRATEGY
5.1 ASSURANCE REQUIREMENTS

Recommendation: Review and, if necessary, revise existing acquisition policy
and implementing materials to ensure that the incremental assurance process is institu-
tionalized.

As described in Sections 2 and 4, the refinement of required characteristics from
operational system level requirements to technical code level requirements and the incre-
mental execution of an assurance plan is necessary to high assurance systems. The flow
of requirements should be reflected in policy and its implementation. This places ulti-
mate responsibility with the acquisition decision-making chain. This is appropriate since
the decision chain is the authority for all risk-related acquisition matters. Among other
things, this approach encourages software assurance requirements to be established in
order to balance hardware and software risks.

Institutionalizing high assurance methods in the acquisition process also helps to
guarantee a measure of coordination since policy directives can call for uniform imple-
menting regulations, standards and technology.

5.2 STANDARDS

Recommendation: Review and revise DoD-STD-2167A and DoD-STD-2168 to
require the application of appropriate assurance methods to high assurance systems.

Since much of the operational risk of a new system is born by its users, it is incum-
bent upon contracting officials to place firm safeguards in statements of work and con-
tracts. If assurance technology is not required by standards and regulations that are
called out in contracts, there are virtually no acceptable alternative mechanisms. Both
the Software Development Standard and the Software Quality Standard should incor-
porate requirements for incremental assurance programs. Furthermore, these standards
should be key implementing documents for higher level policy and guidance and should
therefore be reviewed in that light.

Recommendation: Develop a standard software engineering glossary that is
acceptable to all DoD components listing terms, definitions, and concepts that conform
to standard engineering usages.

45

As noted above, the proliferation of ad hoc and technically unsound definitions of
standard terms like “reliability” is detrimental to the development of sound, uniform
approaches to high assurance systems.

5.3 TECHNOLOGY INSERTION

Recommendation: Use existing technology insertion mechanisms for assurance
technology. Incentivize contractors to develop and deliver productized versions of
assurance tools.

DoD software initiative organizations already exist to facilitate technology transi-
tion and insertion. Among the most important of these are the Ada Joint Program Office
(AJPO), the Software Engineering Institute (SEI), and the Software Technology for
Adaptable and Reliable Systems (STARS) program. Thus far, these organizations have
shown little interest in investing in assurance technology. Special programs with legiti-
mate interests in high assurance software—such as the Strategic Defense Initiative Office
(SDIO)—have also expended little effort in this area to date.

On the other hand, agencies such as the National Computer Security Center
(NCSC) have repeatedly demonstrated how to insert assurance technology through a pro-
gram of institutionalizing assurance requirements and selectively funding productization
of promising technology. While the Security Center has concentrated its efforts on one
technology (formal verification) because of its mission, organizations with less restrictive
charters can adopt similar methods to broaden support for other promising tools and
techniques. By the same token, the NCSC can expand its role in fostering high assurance
technologies other than formal verification.

Explicit assurance requirements in contracts coupled with an economically realis-
tic acquisition strategy for assurance technology productization provide an adequate set
of incentives.

In effect, the existing mechanisms are probably adequate for beginning the inser-
tion process. However, if arbitrarily imposed schedule and budget constraints remain the
highest priority in acquisition, then these insertion mechanisms are certainly not ade-
quate.

5.4 REQUIRED RESEARCH

Recommendation: Establish a broadly-based Tri-Service research initiative to
rebuild the research community in software testing, analysis, and verification. This pro-
gram should be coordinated with the National Science Foundation (NSF) and other
government agencies and should have a minimum goal of increasing funding four fold

46

over a five year period.

The research community in assurance technology is in a shambles. Federal fund-
ing for research in this area is either flat or declining. In 1979, the principle technical
symposium in assurance technology drew over 400 participants. In 1986, the symposium
attracted less than 80. The little industrial research that is conducted is not directed to
DoD problems. It is, for the most part, neither funded nor managed by DoD com-
ponents. There are few university centers of excellence in assurance research. In con-
trast to the early 1970’s, none of the top five university computer science departments in
the US has a critical mass of researchers in assurance technology. Only one academic
computer science department in the top 10 has an active research group. On almost
every front, research in assurance technology has declined since 1976.

Recommendation: Direct PDoD Scientific Research Offices (Air Force Office of
Scientific Research (AFOSR), Army Research Office (ARO), Office of Naval Research
(ONR)) and the Defense Advanced Research Projects Agency (DARPA) to fund both
innovative assurance technology projects (6.1) and longer-term projects (6.2) aimed at
maturing and validating existing methods.

It should be clear that there are no magic solutions to the high assurance system
problem. Advances will only be made by persistent development of promising methods.
The following should be the highest priority:

¢ Continued and deeper basic research on dynamic testing strategies

¢ Support for laboratory and experimental tool development to help determine
cost-benefit tradeoffs for dynamic testing methods

¢ Development of models and methods for testing real-time embedded software

e Development of methods and models for operational testing of mission critical
software

e Full scale experimentation to determine the scope and applicability of formal
program verification for high assurance software

o Full scale field trials to facilitate transition of technology

e Gathering and analysis of software error data to help in determining hazards to
high assurance software development

This will require not only the funding of single investigator research projects aimed at
innovative solutions but also the funding of long-term multi-investigator efforts aimed at
large scale experimentation and field data gathering. The long term goal should be to
achieve a coverage of approaches and in-depth studies of selected approaches.

47

Recommendation: Develop joint industry-university research initiatives.

Universities and industrial R&D centers are beginning to embark on cooperative
ventures aimed at commercial problems. The advantages for universities is the availabil-
ity of long-term collaboration and support from industrial partners (who may provide, for
example, field data for validation studies, state-of-the-art equipment, facilities for pro-
ductization, etc.). The advantages for industry include early access to research results
that provide a competitive edge, contact with students and faculty, and leverage for their
research investment. DoD interests in these joint ventures are only sporadically
represented. The result may be that new technology is employed for exclusively commer-
cial purposes, further slowing the insertion of that technology for DoD problems.

5.5 COORDINATION

Recommendat;on: Implement the recommendations identified in Sections 5.1-5.3
in existing software technology offices through the Director, Defense Research and
Engineering (DDR&E) and his Deputy for Research and Advanced Technology
(DDDRE(R&AT)).

Even though development organizations contain concentrations of expertise in
assurance technology, their near-term horizons limit the possibilities for coordination.

Recommendation: Coordinate with the test and evaluation community.

Broad-based approaches to assurance cannot be successful without the involve-
ment of the Test and Evaluation offices within the Office of the Secretary of Defense
(OSD)— the Director, Operational Test and Evaluation (DOT&E) and the Deputy
Director, Defense Research and Engineering for Test and Evaluation (DDDRE(T&E))—
and in the Services (e.g., the Air Force’s Operational Test and Evaluation Center
(AFOTEC) and Director of Test and Evaluation (SAF/AQV); the Navy’s Operational
Test and Evaluation Force (OPTFOR) and DNirector of Research and Development, Test
and Evaluation; and the Army’s Operatioi. Test and Evaluation Agency (OTEA) and
Test and Evaluation Command (TECOM)). These offices are responsible for testing and
evaluation of acquisition risks for aii major defense systems. Immediate steps should be
taken to determine the software technology requirements imposed by existing and
planned T&E guidance. Furthermore, future R&D in high assurance software should be
planned to complement the thrusts and initiatives of the T& E community.

In addition, existing T&E models, definitions and system acquisition concepts
should be integrated with high assurance software technology development, transition,
and insertion programs.

48

Recommendation: Institutionalize changes.

It is a unique aspect of assurance technology that institutionalizing a sound pro-
cess for applying it is enough to ensure coordination.

49

A]

'REFERENCES

Aho, Alfred V., Brian W. Kernighan, and Peter J. Weinberger. 1985. Awk—A pattern
scanning and processing language programmer’s manual. Murray Hill, NJ: AT&T
Bell Laboratories. Computing Science Technical Report No. 118.

Alford, M. 1977. “A requirements engineering methodology for real-time processing
requirements.” IEEE Transactions on Software Engineering, SE-3, 1 (January):
60-69.

Appelbe, W. F., R. A. DeMillo, D. S. Guindi, K. N. King, and W. M. McCracken.
1988. Using mutation analysis for testing Ada programs. West Lafayette, IN:
Software Engineering Research Center, Purdue University. SERC-TR-9-P.

Avizienis, A. 1976. “Fault-tolerant systems.” IEEE Transactions on Computers, C-25,
12 (December): 1304-1312.

Balzer, R. 1981. Gist Final Report. Information Sciences Institute, University of South-
ern California.

Balzer, R. M., N. Goldman, and D. Wile. 1976. “On the transformational implementa-
tion approach to programming.” In Second international conference on software
engineering, San Francisco, October 13-15, 1976: 337-344.

Barr, Avron, and Edward A. Feigenbaum, editors. 1982. The handbook of artificial
intelligence: Volume 2. Los Altos, CA: William Kaufman, Inc.

Bentley, Jon. 1986. Programming pearls. Reading, MA: Addison-Wesley.

Bolino, John V., and W. Michael McCracken. 1984. “Software test and evaluation in
the Department of Defense.” Journal of Test and Evaluation, V, 3 (October):
37-40.

Booch, Grady. 1983. Software engineering with Ada. Reading, MA: Benjamin/Cum-
mings.

Bowen, Thomas P., Gary B. Wigle, and Jay T. Tsai. 1985. Specification of software
quality attributes. Rome, NY: Rome Air Development Center. RADC-TR-85-37.

31

Browne, J. C. and Mary Shaw. 1981. “Toward a scientific basis for software evalua-
tion.” In Software metrics, Perlis, A., F. Sayward, and M. Shaw, editors: 19-41.

Bruno, Giorgio, and Giuseppe Marchetto. 1986. “Process-translatable petri nets for the
rapid prototyping of process control systems.” IEEE Transactions on Software
Engineering, SE-12, 2 (February): 346-357.

Bruns, Glenn R., Ira Forman, Susan L. Gerhart, and Michael Graf. 1986. Design tech-
nology assessment: The statecharts approach. Austin, TX: Microelectronics and
Computer Technology Corporation. MCC Technical Report Number STP-107-86.

Card, David N., Victor E. Church, and William W. Agresti. 1986. “An empirical study
of software design practices.” IEEE Transactions on Software Engineering, SE-12,
2 (February): 264-271.

Choi, B., R. A. DeMillo, W. Du, and R. Stansifer. 1988. Observing reusable Ada
software components—techniques for recording and using operational histories.

West Lafayette, IN: Software Engineering Research Center, Purdue University.
SERC-TR-18-P.

Conte, S. D., H. E. Dunsmore, and V. Y. Shen. 1986. Software engineering metrics and
models. Reading, MA: Benjamin/Cummings.

Cristian, F. 1980. “Exception handling and software fault-tolerance.” In Digest of
Papers: 10th international symposium on fault-tolerant computing systems
(FT(S-10), Kyoto, October 1-3, 1980: 97-103.

Currit, A., M. Dyer, and H. D. Mills. 1986. “Certifying the reliability of software.”
IEEE Transactions on Software Engineering, SE-12, 1 (January): 3-11.

Darringer, J. A., and J. C. King. 1978. “Applications of symbolic execution to program
testing.” IEEE Computer, 11, 4 (April): 51-60.

DeMillo, Richard A., Richard J. Lipton, and Alan J. Perlis. 1979. “Social processes
and rroofs of theorems and programs.” Communications of the ACM, 22, §
(May): 271-280.

DeMillo, Richard A., Richard J. Lipton, and Federick G. Sayward. 1978. “Hints on test
data selection: Help for the practicing programmer.” IEEE Computer, 11, 4
(April): 3441.

DeMillo, Richard A. and Michael J. Merritt. 1983. “Protocols for data security.” [EEE
Computer, 16, 2 (February): 39-54.

52

DeMillo, Richard A., W. M. McCracken, R. J. Martin, and John F. Passafiume. 1987.
Software testing and evaluation. Reading, MA: Benjamin/Cummings.

DoD Computer Security Center. 1983. Department of Defense trusted computer system
evaluation criteria. Washington, DC: US DoD.

Duran, J. W. and S. Ntafos. 1981. “A report on random testing.” In Proceedings of the
fifth international conference on software engineering, San Diego, CA, March 9-12,
1981: 179-183.

Eastport Study Group. 1985. Summer Study 1985. A report to the Director, Strategic
Defense Initiative Organization. Marina Del Rey, CA: Eastport Study Group.

Fairley, Richard E. 1985. Software Engineering Concepts. New York: McGraw-Hill.

Fujii, Marilyn S. 1978. “A comparison of software assurance methods.” In Proceedings
of the software quality and assurance workshop, San Diego, CA, November 15-17,
1978: 27-32. New York: ACM.

Goel, Amrit L. 1985. “Software reliability models: Assumptions, limitations, and appli-
cability.” IEEE Transactions on Software Engineering, SE-11, 12 (December):
1411-1423.

Goodenough, J. B. 1975. “Exception handling: Issues and a proposed notion.” Com-
munications of the ACM, 18, 12 (December): 683-696.

Green, C. 1976. “The design of the PSI Program Synthesis System.” In Proceedings of
the second international conference on software engineering, San Francisco, CA,
October 13-15, 1976: 4-18.

Henderson, Peter. 1986. “Functional programming, formal specification, and rapid pro-
totyping.” IEEE Transactions on Software Engineering, SE-12, 2 (February):
241-250.

Hecht, Herbert and Myron Hecht. 1986. “Software reliability in the system context.”
IEEE Transactions on Software Engineering, SE-12, 1 (January): 51-58.

Hoare, C. A. R. 1978. “Communicating sequential processes.” Communications of the
ACM, 21, 8 (August): 666-677.

Jackson, Michael A. 1982. System development. Englewood Cliffs, NJ: Prentice-Hall.

Knight, John C., Nancy G. Leveson, and Louis D. St. Jean. 1985. “A large scale experi-
ment in N-version programming.” In Digest of papers: 15th annual international
symposium on fault-tolerant computing (FTCS-15), Ann Arbor, MI, June 19-21,

53

1985: 135-139.

Krauser, E. W. and A. P. Mathur. 1988. Mutant unification for improved vectorization.
West Lafayette, IN: Software Engineering Research Center, Purdue University.
SERC-TR-14-P.

Krishna, C. M., K. G. Shin, and R. W. Butler. 1984. “Synchronization and fault mask-
ing in redundant real-time systems.” In Digest of Papers: 14th annual international
symposium on fault-tolerant computing (FTCS-14), Kissimmee, FL, June 20-22,
1984: 152-157.

Leveson, Nancy G. and Peter R.. Harvey. 1983. “Analyzing software safety.” IEEE
Transactions on Software Engineering, SE-9, 5 (September): 569-579.

Leveson, Nancy G. and Timothy J. Shimeall. 1983. “Safety assertion for process control
systems.” In Digest of Papers: 13th annual international symposium on fault-
tolerant computing (FTCS-13), Milan, Italy, June 28-30, 1983: 236-240.

Linger, R. C., H. D. Mills, and B. I. Witt. 1979. Structured programming: Theory and
practice. Reading, MA: Addison-Wesley.

Linn, Joseph L., Cy D. Ardoin, Cathy J. Linn, Stephen H. Edwards, Michael R. Kap-
pel, and John Salasin. 1988. Strategic Defense Initiative architecture dataflow
modeling technique, version 1.5. Alexandria, VA: Institute for Defense Analyses.
IDA Paper P-2035.

Liskov, B. H. and A. Snyder. 1979. “Exception handling in CLU.” IEEE Transactions
on Software Engineering, SE-5, 6 (November): 546-558.

Martin, R. J. 1987. C2 software development and acquisition study, final report.
Prepared for Air Force Electronic Systems Division. Washington, D.C.: National
Security Industrial Association.

Peterson, J. 1977. “Petri nets.” ACM Computing Surveys, 9, 3 (September): 223-252.

Redwine, Samuel T., Jr., Louise Giovane Becker, Ann B. Marmor-Squires, R. J. Martin,
Sarah H. Nash, and William E. Riddle. 1984. DoD related software technology
requirements: Practices, and prospects for the future. Alexandria, VA: Institute
for Defense Analyses. IDA Paper P-1788.

Rich, D. and H. E. Shrobe. 1978. “Initial report on a LISP programmer’s apprentice.”
IEEE Transactions on Software Engineering, SE-4, 6 (November): 456-467.

54

Richardson, Debra J. and Lori A. Clarke. 1985. “Partition analysis: A method combin-
ing testing and verification.” IEEE Transactions on Software Engineering, SE-11,
12 (December): 1477-1490.

Rine, David C. 1980. “Some models for security and protection analysis based on possi-
bility theory and fuzzy sets.” In CYBERSOFT 80, International symposium on
cybernetics and software, Namur, Belgium, September 9, 1980.

Roby, Clyde G., editor. 1985. Proceedings of the first IDA workshop on formal specifica-
tion and verification of Ada, March 18-20, 1985. Alexandria, VA: Institute for
- Defense Analyses. IDA Memorandum Report M-146.

Rowland, John H. 1988. “Artificial systems for software engineering studies.” In
Proceedings of the second workshop on software testing, verification, and analysis,
Banff, Canada, July 19-21, 1988: 80-88.

Ruth, G. 1978. “Protosystem I: An automatic programming system prototype.” In
AFIPS conference proceedings, 47, Anaheim, CA, June 5-8, 1978: 675-681.

Scott, R. K., J. W. Gault, D. F. McAllister, and J. Wiggs. 1984. “Experimental valida-
tion of six fault-tolerant software reliability models.” In Digest of Papers: 14th
annual international symposium on fault-tolerant computing (FTCS-14), Kissim-
mee, FL, June 20-22, 1984: 102-107.

Shriver, Bruce and Peter Wegner, editors. 1987. Research directions in object-oriented
programming. Cambridge, MA: MIT Press.

Teichrow, D. and E. Hershey. 1977. “PSL/PSA: A computer aided technique for struc-
tured documentation and analysis of information processing systems.” IEEE Tran-
sactions on Software Engineering, SE-3, 1 (January): 41-48.

Walsh, Patrick Joseph. 1985. A measure of test case effectiveness. Ph.D. diss., T. J.
Watson School of Engineering, Applied Science, and Technology, State University
of New York at Binghamton, NY.

Winograd, S. 1962. Computation in the presence of noise. Cambridge, MA: MIT
Press.

Wirth, Niklaus. 1971. “Program development by stepwise refinement.” Communica-
tions of the ACM, 14, 4 (April): 221-227.

Yourdon, E. and L. Constantine. 1979. Structured design: Fundamentals of a discipline
of computer program and systems design. Englewood Cliffs, NJ: Prentice-Hall.

55

Zave, Pamela and William Schell. 1986. “Salient features of an executable specification
language and its environment.” IEEE Transactions on Software Engineering,
SE-12, 2 (February): 312-325.

56

Distribution List for IDA Paper P-2143
NAME AND ADDRESS NUMBER OF COPIES

Sponsor

Dr. John P. Solomond 2
Director

Ada Joint Program Office

Room 3E114

The Pentagon

Washington, D.C. 20301-3081

Other

Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22314

IIT Research Institute 1
4600 Forbes Blvd., Suite 300

Lanham, MD 20706

Attn. Ann Eustice

Mr. Bill Easton 1
P.O.Box 192
Bluemont, VA 22012

Mr. John Faust 1
Rome Air Development Center

RADC/COTC

Griffis AFB, NY 13441

Mr. Pete Fonash 1
Defense Communications Agency

1860 Wiehle Av.

Reston, VA 22090

Mr. Don Greenlee 1
OSD-DOTE

Room 1C730

The Pentagon

Washington, D.C. 20301

National Computer Security Center 1
Attn V45 Ms. Sarah Hadley

Bidg. 911

Airport Square 11

Linthicum, MD 21090

Distribution List-1

NAME AND ADDRESS NUMBER OF COPIES

National Computer Security Center 1
Attn V45 Mr. George Hoover

Bldg. 911

Airport Square 11

Linthicum, MD 21090

Nationai Computer Security Center 1
Attn V45 Ms. Kathy Kucherary

Bldg. 911

Airport Square 11

Linthicum, MD 21090

(301) 859-4374

Dr. R. J. Martin 1
4045 North 300 West
West Lafayette, IN 47906

Dr. Richard DeMillo 1
4045 North 300 West
West Lafayette, IN 47906

National Computer Security Center 1
Attn V45 Mr. Ken Rowe

Bldg. 911

Airport Square 11

Linthicum, MD 21090

National Computer Security Center 1
Attn V45 Mr. David Vaurio

Bldg. 911

Airport Square 11

Linthicum, MD 21090

Ms. Christine Youngblut 1
17021 Sioux Ln.
Gaithersburg, MD 20878

CSED Review Panel

Dr. Dan Alpert, Director 1
Program in Science, Technology & Society

University of Illinois

Room 201

912-1/2 West Illinois Street

Urbana, Illinois 61801

Nistribution List-2

NAME AND ADDRESS

Dr. Thomas C. Brandt
10302 Bluet Terrace
Upper Marlboro, MD 20772

Dr. Ruth Davis

The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Dr. C.E. Hutchinson, Dean
Thayer School of Engineering
Dartmouth College

Hanover, NH 03755

Mr. A.J. Jordano

Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.

Bethesda, MD 20817

Dr. Ernest W. Kent

Philips Laboratories

345 Scarborogh Road
Briarcliff Manor, NY 10510

Dr. John M. Palms, President
Georgia State University

University Plaza
Atlanta, GA 30303

Mr. Keith Uncapher

University of Southern California
Olin Hall

330A University Park

Los Angeles, CA 90089-1454

IDA

General W.Y. Smith, HQ

Ms. Ruth L. Greenstein, HQ
Mr. Philip Major, HQ

Dr. Robert E. Roberts, HQ
Mr. Bill R. Brykczynski, CSED
Ms. Anne Douville, CSED

Dr. Dennis Fife, CSED

Dr. Karen Gordon, CSED

NUMBER OF COPIES

Distribution List-3

1

bkt b p e b gy ek

NAME AND ADDRESS NUMBER OF COPIES

Dr. Richard J. Ivanetich, CSED
Mr. Michael R. Kappel, CSED
Mr. Terry Mayfield, CSED

Dr. Reginald N. Meeson, CSED
Ms. Katydean Price, CSED

Dr. Richard L. Wexelblat, CSED
IDA Control & Distribution Vault

L pd BN WY b s

Distribution List-4

